Documentation

Mathlib.RepresentationTheory.Intertwining

Intertwining maps #

This file gives defines intertwining maps of representations (aka equivariant linear maps).

structure Representation.IsIntertwiningMap {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (Οƒ : Representation A G W) (f : V β†’β‚—[A] W) :

An unbundled version of IntertwiningMap.

  • isIntertwining (g : G) (v : V) : f ((ρ g) v) = (Οƒ g) (f v)
Instances For
    theorem Representation.isIntertwiningMap_iff {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (Οƒ : Representation A G W) (f : V β†’β‚—[A] W) :
    ρ.IsIntertwiningMap Οƒ f ↔ βˆ€ (g : G) (v : V), f ((ρ g) v) = (Οƒ g) (f v)
    structure Representation.IntertwiningMap {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (Οƒ : Representation A G W) extends V β†’β‚—[A] W :
    Type (max u_3 u_4)

    An intertwining map between two representations ρ and Οƒ of the same monoid G is a map between underlying modules which commutes with the G-actions.

    Instances For
      theorem Representation.IntertwiningMap.ext {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} {inst✝ : CommRing A} {inst✝¹ : Monoid G} {inst✝² : AddCommMonoid V} {inst✝³ : AddCommMonoid W} {inst✝⁴ : Module A V} {inst✝⁡ : Module A W} {ρ : Representation A G V} {Οƒ : Representation A G W} {x y : ρ.IntertwiningMap Οƒ} (toFun : x.toFun = y.toFun) :
      x = y
      theorem Representation.IntertwiningMap.ext_iff {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} {inst✝ : CommRing A} {inst✝¹ : Monoid G} {inst✝² : AddCommMonoid V} {inst✝³ : AddCommMonoid W} {inst✝⁴ : Module A V} {inst✝⁡ : Module A W} {ρ : Representation A G V} {Οƒ : Representation A G W} {x y : ρ.IntertwiningMap Οƒ} :
      x = y ↔ x.toFun = y.toFun
      theorem Representation.IntertwiningMap.toLinearMap_injective {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (Οƒ : Representation A G W) :
      theorem Representation.IntertwiningMap.toFun_injective {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (Οƒ : Representation A G W) :
      Function.Injective fun (f : ρ.IntertwiningMap Οƒ) => f.toFun
      instance Representation.IntertwiningMap.instFunLike {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (Οƒ : Representation A G W) :
      FunLike (ρ.IntertwiningMap Οƒ) V W
      Equations
        @[simp]
        theorem Representation.IntertwiningMap.coe_mk {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (Οƒ : Representation A G W) (f : V β†’β‚—[A] W) (h : βˆ€ (g : G) (v : V), f.toFun ((ρ g) v) = (Οƒ g) (f.toFun v)) :
        ⇑{ toLinearMap := f, isIntertwining' := h } = ⇑f
        theorem Representation.IntertwiningMap.isIntertwining {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (Οƒ : Representation A G W) (f : ρ.IntertwiningMap Οƒ) (g : G) (v : V) :
        f ((ρ g) v) = (Οƒ g) (f v)
        @[simp]
        theorem Representation.IntertwiningMap.toLinearMap_apply {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (Οƒ : Representation A G W) (f : ρ.IntertwiningMap Οƒ) (v : V) :
        f.toLinearMap v = f v
        instance Representation.IntertwiningMap.instZero {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (Οƒ : Representation A G W) :
        Zero (ρ.IntertwiningMap Οƒ)
        Equations
          @[simp]
          theorem Representation.IntertwiningMap.coe_zero {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (Οƒ : Representation A G W) :
          ⇑0 = 0
          instance Representation.IntertwiningMap.instAdd {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (Οƒ : Representation A G W) :
          Add (ρ.IntertwiningMap Οƒ)
          Equations
            @[simp]
            theorem Representation.IntertwiningMap.coe_add {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (Οƒ : Representation A G W) (f g : ρ.IntertwiningMap Οƒ) :
            ⇑(f + g) = ⇑f + ⇑g
            instance Representation.IntertwiningMap.instSMul {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (Οƒ : Representation A G W) :
            SMul A (ρ.IntertwiningMap Οƒ)
            Equations
              @[simp]
              theorem Representation.IntertwiningMap.coe_smul {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (Οƒ : Representation A G W) (a : A) (f : ρ.IntertwiningMap Οƒ) :
              ⇑(a β€’ f) = a β€’ ⇑f
              instance Representation.IntertwiningMap.instSMulNat {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (Οƒ : Representation A G W) :
              Equations
                @[simp]
                theorem Representation.IntertwiningMap.coe_nsmul {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (Οƒ : Representation A G W) (n : β„•) (f : ρ.IntertwiningMap Οƒ) :
                ⇑(n β€’ f) = n β€’ ⇑f
                instance Representation.IntertwiningMap.instAddCommMonoid {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (Οƒ : Representation A G W) :
                Equations
                  def Representation.IntertwiningMap.coeFnAddMonoidHom {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (Οƒ : Representation A G W) :
                  ρ.IntertwiningMap Οƒ β†’+ V β†’ W

                  A coercion from intertwining maps to additive monoid homomorphisms.

                  Equations
                    Instances For
                      instance Representation.IntertwiningMap.instModule {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [Module A V] [Module A W] (ρ : Representation A G V) (Οƒ : Representation A G W) :
                      Module A (ρ.IntertwiningMap Οƒ)
                      Equations

                        An intertwining map is the same thing as a linear map over the group ring.

                        Equations
                          Instances For
                            def Representation.IntertwiningMap.id {A : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid V] [Module A V] (ρ : Representation A G V) :
                            ρ.IntertwiningMap ρ

                            The identity map, considered as an intertwining map from a representation to itself.

                            Equations
                              Instances For
                                def Representation.IntertwiningMap.llcomp {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} {U : Type u_5} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [AddCommMonoid U] [Module A V] [Module A W] [Module A U] (ρ : Representation A G V) (Οƒ : Representation A G W) (Ο„ : Representation A G U) :

                                Composition of intertwining maps.

                                Equations
                                  Instances For
                                    def Representation.IntertwiningMap.comp {A : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} {U : Type u_5} [CommRing A] [Monoid G] [AddCommMonoid V] [AddCommMonoid W] [AddCommMonoid U] [Module A V] [Module A W] [Module A U] {ρ : Representation A G V} {Οƒ : Representation A G W} {Ο„ : Representation A G U} (f : Οƒ.IntertwiningMap Ο„) (g : ρ.IntertwiningMap Οƒ) :
                                    ρ.IntertwiningMap Ο„

                                    Composition of intertwining maps.

                                    A convenience variant of IntertwiningMap.llcomp for use in dot notation.

                                    Equations
                                      Instances For
                                        instance Representation.IntertwiningMap.instMul {A : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid V] [Module A V] (ρ : Representation A G V) :
                                        Mul (ρ.IntertwiningMap ρ)
                                        Equations
                                          @[simp]
                                          theorem Representation.IntertwiningMap.coe_mul {A : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid V] [Module A V] (ρ : Representation A G V) (f g : ρ.IntertwiningMap ρ) :
                                          @[simp]
                                          theorem Representation.IntertwiningMap.mul_apply {A : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid V] [Module A V] (ρ : Representation A G V) (f g : ρ.IntertwiningMap ρ) (v : V) :
                                          (f * g) v = f (g v)
                                          instance Representation.IntertwiningMap.instOne {A : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid V] [Module A V] (ρ : Representation A G V) :
                                          One (ρ.IntertwiningMap ρ)
                                          Equations
                                            @[simp]
                                            theorem Representation.IntertwiningMap.coe_one {A : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid V] [Module A V] (ρ : Representation A G V) :
                                            ⇑1 = _root_.id
                                            instance Representation.IntertwiningMap.instSemigroup {A : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid V] [Module A V] (ρ : Representation A G V) :
                                            Equations
                                              instance Representation.IntertwiningMap.instPowNat {A : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid V] [Module A V] (ρ : Representation A G V) :
                                              Equations
                                                instance Representation.IntertwiningMap.instMonoid {A : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid V] [Module A V] (ρ : Representation A G V) :
                                                Equations
                                                  instance Representation.IntertwiningMap.instNatCast {A : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid V] [Module A V] (ρ : Representation A G V) :
                                                  Equations
                                                    instance Representation.IntertwiningMap.instSemiring {A : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid V] [Module A V] (ρ : Representation A G V) :
                                                    Equations
                                                      instance Representation.IntertwiningMap.instAlgebra {A : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid V] [Module A V] (ρ : Representation A G V) :
                                                      Algebra A (ρ.IntertwiningMap ρ)
                                                      Equations
                                                        @[simp]
                                                        theorem Representation.IntertwiningMap.algebraMap_apply {A : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid V] [Module A V] (ρ : Representation A G V) (a : A) :
                                                        (algebraMap A (ρ.IntertwiningMap ρ)) a = a β€’ 1

                                                        Intertwining maps from ρ to itself are the same as A[G]-linear endomorphisms.

                                                        Equations
                                                          Instances For
                                                            theorem Representation.IntertwiningMap.isIntertwiningMap_of_mem_center {A : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid V] [Module A V] (ρ : Representation A G V) (g : G) (hg : g ∈ Submonoid.center G) :
                                                            ρ.IsIntertwiningMap ρ (ρ g)
                                                            def Representation.IntertwiningMap.centralMul {A : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid V] [Module A V] (ρ : Representation A G V) (g : G) (hg : g ∈ Submonoid.center G) :
                                                            ρ.IntertwiningMap ρ

                                                            If g is a central element of a monoid G, then this is the action of g, considered as an intertwining map from any representation of G to itself.

                                                            Equations
                                                              Instances For