Documentation Verification Report

Different

πŸ“ Source: Mathlib/RingTheory/DedekindDomain/Different.lean

Statistics

MetricCount
Definitionsdual, traceDual, differentIdeal
3
Theoremscoe_dual, coe_dual_one, dual_div_dual, dual_dual, dual_eq_dual_mul_dual, dual_eq_mul_inv, dual_eq_zero_iff, dual_injective, dual_inv, dual_inv_le, dual_involutive, dual_le_dual, dual_mul_self, dual_ne_zero, dual_ne_zero_iff, dual_zero, inv_le_dual, le_dual_iff, le_dual_inv_aux, mem_dual, one_le_dual_one, self_mul_dual, smul_mem_dual_one, trace_mem_dual_one, le_traceDual, le_traceDual_comm, le_traceDual_iff_map_le_one, le_traceDual_mul_iff, le_traceDual_traceDual, mem_traceDual, mem_traceDual_iff_isIntegral, one_le_traceDual_one, restrictScalars_traceDual, traceDual_bot, traceDual_span_of_basis, traceDual_top, traceDual_top', aeval_derivative_mem_differentIdeal, coeIdeal_differentIdeal, coeSubmodule_differentIdeal, coeSubmodule_differentIdeal_fractionRing, conductor_mul_differentIdeal, differentIdeal_eq_differentIdeal_mul_differentIdeal, differentIdeal_ne_bot, differentialIdeal_le_fractionalIdeal_iff, differentialIdeal_le_iff, dvd_differentIdeal_iff, dvd_differentIdeal_of_not_isSeparable, isIntegral_discr_mul_of_mem_traceDual, map_equiv_traceDual, not_dvd_differentIdeal_iff, not_dvd_differentIdeal_of_intTrace_not_mem, not_dvd_differentIdeal_of_isCoprime, not_dvd_differentIdeal_of_isCoprime_of_isSeparable, pow_sub_one_dvd_differentIdeal, pow_sub_one_dvd_differentIdeal_aux, traceForm_dualSubmodule_adjoin
57
Total60

FractionalIdeal

Definitions

NameCategoryTheorems
dual πŸ“–CompOp
21 mathmath: le_dual_iff, dual_eq_dual_mul_dual, one_le_dual_one, coe_dual, coe_dual_one, coeIdeal_differentIdeal, inv_le_dual, dual_mul_self, mem_dual, dual_involutive, dual_eq_mul_inv, dual_div_dual, dual_zero, dual_le_dual, dual_inv, dual_eq_zero_iff, dual_inv_le, dual_injective, self_mul_dual, dual_dual, le_dual_inv_aux

Theorems

NameKindAssumesProvesValidatesDepends On
coe_dual πŸ“–mathematicalβ€”coeToSubmodule
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
dual
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
Submodule.traceDual
β€”IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
dual.eq_1
coe_dual_one πŸ“–mathematicalβ€”coeToSubmodule
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
dual
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
FractionalIdeal
instOne
Submodule.traceDual
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Submodule.one
β€”IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
coe_one
coe_dual
one_ne_zero
NeZero.one
instNontrivialNonZeroDivisors
dual_div_dual πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instDivNonZeroDivisors
IsDedekindDomain.toIsDomain
dual
IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
β€”IsDedekindDomain.toIsDomain
IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
dual_eq_mul_inv
mul_div_mul_comm
div_self
NeZero.one
instNontrivialNonZeroDivisors
one_mul
inv_div_inv
dual_dual πŸ“–mathematicalβ€”dual
IsDomain.toNontrivial
CommSemiring.toSemiring
CommRing.toCommSemiring
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
β€”IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
dual_eq_mul_inv
mul_inv
inv_inv
mul_assoc
mul_inv_cancelβ‚€
dual_ne_zero_iff
one_ne_zero
NeZero.one
instNontrivialNonZeroDivisors
one_mul
dual_eq_dual_mul_dual πŸ“–mathematicalβ€”dual
IsDomain.toNontrivial
CommSemiring.toSemiring
CommRing.toCommSemiring
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instOne
instMul
IsDedekindDomainDvr.isIntegrallyClosed
IsDedekindDomain.isDedekindDomainDvr
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
commSemiring
RingHom.instFunLike
extendedHomₐ
β€”IsIntegralClosure.isLocalization
IsDedekindDomain.toIsDomain
Algebra.IsSeparable.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
nonZeroDivisors_le_comap_nonZeroDivisors_of_injective
IsDomain.to_noZeroDivisors
FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
IsLocalization.algebraMap_apply_eq_map_map_submonoid
le_antisymm
IsDedekindDomainDvr.isIntegrallyClosed
IsDedekindDomain.isDedekindDomainDvr
spanSingleton_le_iff_mem
mul_inv_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
instMulPosReflectLENonZeroDivisors
bot_lt_iff_ne_bot
instNontrivialNonZeroDivisors
NeZero.one
map_invβ‚€
coe_le_coe
extendedHom_apply
IsScalarTower.right
coe_mul
coe_spanSingleton
coe_extended_eq_span
coe_dual_one
Submodule.span_mul_span
Submodule.span_le
Algebra.to_smulCommClass
mul_comm
Algebra.smul_def
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
mul_one
coe_one
mem_inv_iff
trace_mem_dual_one
Submodule.smul_mem
Submodule.span_eq
smul_mem_dual_one
dual_eq_mul_inv πŸ“–mathematicalβ€”dual
IsDomain.toNontrivial
CommSemiring.toSemiring
CommRing.toCommSemiring
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instMul
instOne
instInvNonZeroDivisors
β€”IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
dual.congr_simp
dual_zero
inv_zero
MulZeroClass.mul_zero
le_antisymm
le_mul_inv_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
instMulPosReflectLENonZeroDivisors
pos_iff_ne_zero
instCanonicallyOrderedAdd
le_dual_iff
le_refl
mul_assoc
inv_mul_cancelβ‚€
mul_one
dual_eq_zero_iff πŸ“–mathematicalβ€”dual
IsDomain.toNontrivial
CommSemiring.toSemiring
CommRing.toCommSemiring
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instZero
β€”IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
not_imp_not
dual_ne_zero
dual_zero
dual_injective πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
dual
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
β€”Function.Involutive.injective
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
dual_involutive
dual_inv πŸ“–mathematicalβ€”dual
IsDomain.toNontrivial
CommSemiring.toSemiring
CommRing.toCommSemiring
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instInvNonZeroDivisors
instMul
instOne
β€”IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
dual_eq_mul_inv
inv_inv
dual_inv_le πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instInvNonZeroDivisors
IsDedekindDomain.toIsDomain
dual
IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
β€”IsDedekindDomain.toIsDomain
IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
dual.congr_simp
dual_zero
inv_zero
inv_le_commβ‚€
PosMulReflectLE.toPosMulReflectLT
instPosMulReflectLENonZeroDivisors
MulPosReflectLE.toMulPosReflectLT
instMulPosReflectLENonZeroDivisors
instCanonicallyOrderedAdd
inv_le_dual
dual_involutive πŸ“–mathematicalβ€”Function.Involutive
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
dual
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
β€”dual_dual
dual_le_dual πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
dual
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
β€”IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
dual_dual
le_dual_iff
dual_ne_zero_iff
mul_comm
dual_mul_self πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instMul
dual
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
instOne
β€”IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
dual_eq_mul_inv
mul_assoc
inv_mul_cancelβ‚€
mul_one
dual_ne_zero πŸ“–β€”β€”β€”β€”IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
Subtype.prop
mem_dual
IsIntegrallyClosed.isIntegral_iff
Algebra.isIntegral_trace
IsIntegralClosure.isIntegral_iff
Algebra.smul_def
mem_nonZeroDivisors_iff_ne_zero
IsIntegralClosure.algebraMap_injective
RingHom.map_zero
mem_zero_iff
dual_ne_zero_iff πŸ“–β€”β€”β€”β€”Iff.not
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
dual_eq_zero_iff
dual_zero πŸ“–mathematicalβ€”dual
IsDomain.toNontrivial
CommSemiring.toSemiring
CommRing.toCommSemiring
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instZero
β€”IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
dual.eq_1
inv_le_dual πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instInvNonZeroDivisors
IsDedekindDomain.toIsDomain
dual
IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
β€”IsDedekindDomain.toIsDomain
IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
inv_zero
dual.congr_simp
dual_zero
le_dual_inv_aux
le_of_eq
mul_inv_cancelβ‚€
le_dual_iff πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
dual
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
instMul
instOne
β€”IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
instCanonicallyOrderedAdd
MulZeroClass.zero_mul
coe_le_coe
IsScalarTower.right
coe_mul
coe_dual
coe_dual_one
Submodule.le_traceDual
le_dual_inv_aux πŸ“–mathematicalFractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instMul
instOne
dual
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
β€”IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
dual.eq_1
Submodule.mem_one
IsIntegrallyClosed.isIntegral_iff
Algebra.isIntegral_trace
IsIntegralClosure.isIntegral_iff
mul_mem_mul
mul_comm
mem_dual πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
SetLike.instMembership
instSetLike
dual
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
Subring
DivisionRing.toRing
Field.toDivisionRing
Subring.instSetLike
RingHom.range
CommRing.toRing
algebraMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
Semiring.toModule
LinearMap.instFunLike
LinearMap.BilinForm
LinearMap.addCommMonoid
LinearMap.module
Algebra.traceForm
β€”IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
dual.eq_1
Submodule.mem_one
one_le_dual_one πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instOne
dual
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
β€”le_dual_inv_aux
one_ne_zero
NeZero.one
instNontrivialNonZeroDivisors
one_mul
le_refl
self_mul_dual πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instMul
dual
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
instOne
β€”IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
mul_comm
dual_mul_self
smul_mem_dual_one πŸ“–mathematicalFractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
SetLike.instMembership
instSetLike
dual
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
instOne
IsDedekindDomainDvr.isIntegrallyClosed
IsDedekindDomain.isDedekindDomainDvr
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
IsDedekindDomainDvr.isIntegrallyClosed
IsDedekindDomain.isDedekindDomainDvr
NeZero.one
instNontrivialNonZeroDivisors
mul_comm
Algebra.smul_def
LinearMap.map_smul
SMulCommClass.smul_comm
SMulCommClass.of_commMonoid
IsScalarTower.right
Algebra.trace_trace
Module.free_of_finite_type_torsion_free'
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
trace_mem_dual_one πŸ“–mathematicalFractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
SetLike.instMembership
instSetLike
dual
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
instOne
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Semiring.toModule
LinearMap.instFunLike
Algebra.trace
β€”IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
NeZero.one
instNontrivialNonZeroDivisors
mul_comm
LinearMap.IsScalarTower.compatibleSMul
IsScalarTower.right
Algebra.trace_trace
Module.free_of_finite_type_torsion_free'
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
algebraMap_smul

Submodule

Definitions

NameCategoryTheorems
traceDual πŸ“–CompOp
20 mathmath: one_le_traceDual_one, coeSubmodule_differentIdeal, coeSubmodule_differentIdeal_fractionRing, traceDual_top', le_traceDual_traceDual, FractionalIdeal.coe_dual, FractionalIdeal.coe_dual_one, traceDual_le_span_map_traceDual, map_equiv_traceDual, restrictScalars_traceDual, le_traceDual, le_traceDual_comm, traceDual_eq_span_map_traceDual_of_linearDisjoint, mem_traceDual, traceDual_bot, traceDual_span_of_basis, le_traceDual_mul_iff, le_traceDual_iff_map_le_one, traceDual_top, mem_traceDual_iff_isIntegral

Theorems

NameKindAssumesProvesValidatesDepends On
le_traceDual πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
traceDual
mul
IsScalarTower.right
one
β€”IsScalarTower.right
le_traceDual_mul_iff
mul_one
le_traceDual_comm πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
traceDual
β€”IsScalarTower.right
le_traceDual
mul_comm
le_traceDual_iff_map_le_one πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
traceDual
map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap.restrictScalars
Semiring.toModule
LinearMap.IsScalarTower.compatibleSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.toSMul
IsScalarTower.right
Algebra.trace
restrictScalars
mul
one
β€”RingHomSurjective.ids
LinearMap.IsScalarTower.compatibleSMul
IsScalarTower.right
map_le_iff_le_comap
restrictScalars_mul
mul_le
instIsConcreteLE
le_traceDual_mul_iff πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
traceDual
mul
IsScalarTower.right
β€”IsScalarTower.right
RingHomSurjective.ids
LinearMap.IsScalarTower.compatibleSMul
map.congr_simp
restrictScalars.congr_simp
mul_assoc
le_traceDual_traceDual πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
traceDual
β€”le_traceDual_comm
le_rfl
mem_traceDual πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SetLike.instMembership
setLike
traceDual
Subring
DivisionRing.toRing
Field.toDivisionRing
Subring.instSetLike
RingHom.range
CommRing.toRing
algebraMap
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
LinearMap.BilinForm
LinearMap.addCommMonoid
LinearMap.module
Algebra.traceForm
β€”mem_one
mem_traceDual_iff_isIntegral πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SetLike.instMembership
setLike
traceDual
IsIntegral
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
LinearMap.BilinForm
LinearMap.addCommMonoid
LinearMap.module
Algebra.traceForm
β€”mem_one
IsIntegrallyClosed.isIntegral_iff
one_le_traceDual_one πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
one
traceDual
β€”RingHomSurjective.ids
LinearMap.IsScalarTower.compatibleSMul
IsScalarTower.right
le_traceDual_iff_map_le_one
mul_one
one_eq_range
mem_one
IsIntegrallyClosed.isIntegral_iff
Algebra.isIntegral_trace
IsIntegralClosure.isIntegral_iff
restrictScalars_traceDual πŸ“–mathematicalβ€”restrictScalars
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.toSMul
traceDual
LinearMap.BilinForm.dualSubmodule
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
Algebra.traceForm
β€”β€”
traceDual_bot πŸ“–mathematicalβ€”traceDual
Bot.bot
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instBot
Top.top
instTop
β€”ext
MulZeroClass.mul_zero
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
Subring.instSubringClass
traceDual_span_of_basis πŸ“–mathematicalrestrictScalars
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.toSMul
span
Set.range
DFunLike.coe
Module.Basis
Semifield.toCommSemiring
Module.Basis.instFunLike
traceDual
Field.toCommRing
Module.Basis.traceDual
β€”restrictScalars_traceDual
LinearMap.BilinForm.dualSubmodule_span_of_basis
traceForm_nondegenerate
traceDual_top πŸ“–mathematicalβ€”traceDual
Top.top
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instTop
IsField
Bot.bot
instBot
β€”IsScalarTower.right
RingHomSurjective.ids
IsFractionRing.surjective_iff_isField
LinearMap.range_eq_top
Algebra.trace_surjective
RingHom.range_eq_top
eq_top_iff
instIsConcreteLE
traceDual_top'
traceDual_top' πŸ“–mathematicalβ€”traceDual
Top.top
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instTop
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
restrictScalars
Semiring.toModule
Algebra.toSMul
IsScalarTower.right
LinearMap.range
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
Algebra.trace
one
Bot.bot
instBot
β€”IsScalarTower.right
RingHomSurjective.ids
eq_top_iff
instIsConcreteLE
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
mul_inv_cancel_leftβ‚€

(root)

Definitions

NameCategoryTheorems
differentIdeal πŸ“–CompOp
21 mathmath: IsDedekindDomain.differentIdeal_dvd_map_differentIdeal, NumberField.isCoprime_differentIdeal_of_isCoprime_discr, differentIdeal_eq_differentIdeal_mul_differentIdeal, pow_sub_one_dvd_differentIdeal, coeSubmodule_differentIdeal, coeSubmodule_differentIdeal_fractionRing, differentialIdeal_le_iff, NumberField.natAbs_discr_eq_absNorm_differentIdeal_mul_natAbs_discr_pow, coeIdeal_differentIdeal, differentialIdeal_le_fractionalIdeal_iff, not_dvd_differentIdeal_of_isCoprime_of_isSeparable, dvd_differentIdeal_iff, NumberField.discr_mem_differentIdeal, NumberField.absNorm_differentIdeal, dvd_differentIdeal_of_not_isSeparable, not_dvd_differentIdeal_of_isCoprime, not_dvd_differentIdeal_iff, aeval_derivative_mem_differentIdeal, conductor_mul_differentIdeal, not_dvd_differentIdeal_of_intTrace_not_mem, pow_sub_one_dvd_differentIdeal_aux

Theorems

NameKindAssumesProvesValidatesDepends On
aeval_derivative_mem_differentIdeal πŸ“–mathematicalAlgebra.adjoin
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Set
Set.instSingletonSet
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
differentIdeal
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
LinearMap
RingHom.id
Polynomial.module
LinearMap.instFunLike
Polynomial.derivative
minpoly
CommRing.toRing
β€”SetLike.le_def
instIsConcreteLE
IsScalarTower.right
conductor_mul_differentIdeal
Ideal.mul_le_left
Ideal.mem_span_singleton_self
coeIdeal_differentIdeal πŸ“–mathematicalβ€”FractionalIdeal.coeIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
differentIdeal
FractionalIdeal
FractionalIdeal.instInvNonZeroDivisors
IsDedekindDomain.toIsDomain
FractionalIdeal.dual
IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
FractionalIdeal.instOne
β€”FractionalIdeal.coeToSubmodule_injective
IsDedekindDomain.toIsDomain
IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
coeSubmodule_differentIdeal
inv_eq_one_div
FractionalIdeal.coe_div
FractionalIdeal.dual_ne_zero
one_ne_zero
NeZero.one
FractionalIdeal.instNontrivialNonZeroDivisors
FractionalIdeal.coe_one
FractionalIdeal.coe_dual_one
coeSubmodule_differentIdeal πŸ“–mathematicalβ€”IsLocalization.coeSubmodule
CommRing.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
differentIdeal
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Submodule.instDiv
Submodule.one
Submodule.traceDual
β€”RingHomCompTriple.ids
RingHomInvPair.ids
LinearMap.ext_ring
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
IsLocalization.coeSubmodule.eq_1
IsDedekindDomain.toIsDomain
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
IsLocalization.ringHom_ext
RingHom.ext
AlgEquiv.commutes
FractionRing.instIsScalarTower
IsScalarTower.right
OreLocalization.instIsScalarTower
IsScalarTower.left
IsScalarTower.algebraMap_apply
Algebra.IsSeparable.of_equiv_equiv
IsDomain.to_noZeroDivisors
Module.Finite.of_equiv_equiv
IsIntegralClosure.isIntegral_algebra
RingHomSurjective.ids
Submodule.map_comp
coeSubmodule_differentIdeal_fractionRing
Submodule.map_div
AlgEquiv.toAlgHom_toLinearMap
Submodule.map_one
map_equiv_traceDual
Submodule.ext
coeSubmodule_differentIdeal_fractionRing πŸ“–mathematicalβ€”IsLocalization.coeSubmodule
CommRing.toCommSemiring
FractionRing
OreLocalization.instCommSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
OreLocalization.oreSetComm
CommRing.toCommMonoid
OreLocalization.instAlgebra
Algebra.id
differentIdeal
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
FractionRing.field
IsDedekindDomain.toIsDomain
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Submodule.instDiv
Submodule.one
Submodule.traceDual
FractionRing.liftAlgebra
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
CommRing.toRing
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
FractionRing.instIsScalarTower
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
IsScalarTower.right
Algebra.toSMul
OreLocalization.instIsScalarTower
CommMonoid.toMonoid
Monoid.toMulAction
IsScalarTower.left
β€”IsDedekindDomain.toIsDomain
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
FractionRing.instIsScalarTower
IsScalarTower.right
OreLocalization.instIsScalarTower
IsScalarTower.left
IsLocalization.coeSubmodule.eq_1
differentIdeal.eq_1
Submodule.map_comap_eq
inf_eq_right
Localization.isLocalization
IsIntegralClosure.of_isIntegrallyClosed
IsDedekindDomainDvr.isIntegrallyClosed
IsDedekindDomain.isDedekindDomainDvr
FractionalIdeal.dual_inv_le
RingHomSurjective.ids
Submodule.one_eq_range
Submodule.traceDual.congr_simp
FractionalIdeal.coe_one
FractionalIdeal.coe_dual
one_ne_zero
NeZero.one
FractionalIdeal.instNontrivialNonZeroDivisors
FractionalIdeal.coe_div
FractionalIdeal.dual_ne_zero
one_div
conductor_mul_differentIdeal πŸ“–mathematicalAlgebra.adjoin
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Set
Set.instSingletonSet
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Ideal
Submodule.mul
Semiring.toModule
IsScalarTower.right
Algebra.id
conductor
differentIdeal
Ideal.span
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
AlgHom.funLike
Polynomial.aeval
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Polynomial.module
LinearMap.instFunLike
Polynomial.derivative
minpoly
CommRing.toRing
β€”IsIntegralClosure.isIntegral
FractionalIdeal.coeIdeal_injective
IsIntegralClosure.isFractionRing_of_finite_extension
IsDedekindDomain.toIsDomain
IsScalarTower.right
FractionalIdeal.coeIdeal_mul
FractionalIdeal.coeIdeal_span_singleton
IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
coeIdeal_differentIdeal
mul_inv_eq_iff_eq_mulβ‚€
FractionalIdeal.dual_ne_zero
one_ne_zero
NeZero.one
FractionalIdeal.instNontrivialNonZeroDivisors
FractionalIdeal.coeToSubmodule_injective
IsScalarTower.to_smulCommClass'
FractionalIdeal.coe_mul
FractionalIdeal.coe_spanSingleton
Submodule.span_singleton_mul
Submodule.ext
Polynomial.Separable.aeval_derivative_ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
Algebra.IsSeparable.isSeparable
minpoly.aeval
Polynomial.aeval_algebraMap_apply
Polynomial.aeval_map_algebraMap
Polynomial.derivative_map
minpoly.isIntegrallyClosed_eq_field_fractions
Submodule.mem_smul_iff_inv_mul_mem
FractionalIdeal.mem_coe
FractionalIdeal.mem_dual
mem_coeSubmodule_conductor
FaithfulSMul.to_isTorsionFree
IsFractionRing.instFaithfulSMul
IsDomain.toIsCancelMulZero
instIsDomain
inv_eq_zero
IsIntegral.map
IsScalarTower.left
AlgHom.algHomClass
Submodule.mul_mem_smul_iff
mem_nonZeroDivisors_of_ne_zero
traceForm_dualSubmodule_adjoin
mul_assoc
RingHomSurjective.ids
Submodule.one_eq_range
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Subalgebra.instSubsemiringClass
mul_one
differentIdeal_eq_differentIdeal_mul_differentIdeal πŸ“–mathematicalβ€”differentIdeal
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.mul
Semiring.toModule
IsScalarTower.right
Algebra.id
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”IsDedekindDomain.toIsDomain
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
Algebra.isSeparable_tower_top_of_isSeparable
FractionRing.instIsScalarTower_1
FractionRing.instIsScalarTower
IsScalarTower.right
OreLocalization.instIsScalarTower
Algebra.isSeparable_tower_bot_of_isSeparable
FractionRing.instNontrivial
Localization.isLocalization
FractionalIdeal.coeIdeal_mul
IsScalarTower.left
Module.Finite.of_isLocalization
Algebra.IsAlgebraic.instIsLocalizationAlgebraMapSubmonoidNonZeroDivisors
Algebra.IsAlgebraic.of_finite
IsDomain.to_noZeroDivisors
IsIntegralClosure.of_isIntegrallyClosed
IsDedekindDomainDvr.isIntegrallyClosed
IsDedekindDomain.isDedekindDomainDvr
Algebra.IsIntegral.of_finite
coeIdeal_differentIdeal
FractionalIdeal.extendedHomₐ_coeIdeal_eq_map
map_invβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mul_inv
inv_eq_iff_eq_inv
inv_inv
FractionalIdeal.dual_eq_dual_mul_dual
differentIdeal_ne_bot πŸ“–β€”β€”β€”β€”IsDedekindDomain.toIsDomain
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
Localization.isLocalization
FractionRing.instIsScalarTower
IsScalarTower.right
OreLocalization.instIsScalarTower
IsScalarTower.left
instFiniteDimensionalFractionRingOfFinite
IsIntegralClosure.of_isIntegrallyClosed
IsDedekindDomainDvr.isIntegrallyClosed
IsDedekindDomain.isDedekindDomainDvr
Algebra.IsIntegral.of_finite
IsDomain.to_noZeroDivisors
coeIdeal_differentIdeal
NeZero.one
FractionalIdeal.instNontrivialNonZeroDivisors
differentialIdeal_le_fractionalIdeal_iff πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
FractionalIdeal.instPartialOrder
FractionalIdeal.coeIdeal
differentIdeal
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Submodule.instPartialOrder
Submodule.map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap.restrictScalars
Semiring.toModule
LinearMap.IsScalarTower.compatibleSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Module.toDistribMulAction
Algebra.toSMul
IsScalarTower.right
Algebra.trace
Submodule.restrictScalars
FractionalIdeal.coeToSubmodule
FractionalIdeal.instInvNonZeroDivisors
IsDedekindDomain.toIsDomain
Submodule.one
β€”RingHomSurjective.ids
LinearMap.IsScalarTower.compatibleSMul
IsScalarTower.right
IsDedekindDomain.toIsDomain
IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
coeIdeal_differentIdeal
FractionalIdeal.inv_le_comm
NeZero.one
FractionalIdeal.instNontrivialNonZeroDivisors
FractionalIdeal.coe_le_coe
FractionalIdeal.coe_dual_one
Submodule.le_traceDual_iff_map_le_one
Submodule.map.congr_simp
Submodule.restrictScalars.congr_simp
mul_one
differentialIdeal_le_iff πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
differentIdeal
Submodule
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Submodule.map
RingHom.id
RingHomSurjective.ids
LinearMap.restrictScalars
LinearMap.IsScalarTower.compatibleSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.toSMul
IsScalarTower.right
Algebra.trace
Submodule.restrictScalars
FractionalIdeal.coeToSubmodule
nonZeroDivisors
FractionalIdeal
FractionalIdeal.instInvNonZeroDivisors
IsDedekindDomain.toIsDomain
FractionalIdeal.coeIdeal
Submodule.one
β€”RingHomSurjective.ids
LinearMap.IsScalarTower.compatibleSMul
IsScalarTower.right
IsDedekindDomain.toIsDomain
FractionalIdeal.coeIdeal_le_coeIdeal
differentialIdeal_le_fractionalIdeal_iff
dvd_differentIdeal_iff πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
Semiring.toModule
IsScalarTower.right
Algebra.id
differentIdeal
Algebra.IsUnramifiedAt
β€”IsDedekindDomain.toIsDomain
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
IsScalarTower.right
iff_not_comm
not_dvd_differentIdeal_iff
dvd_differentIdeal_of_not_isSeparable πŸ“–mathematicalAlgebra.IsSeparable
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Ideal.Quotient.commRing
Ideal.Quotient.instRingQuotient
Ideal.Quotient.algebraOfLiesOver
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
Semiring.toModule
IsScalarTower.right
Algebra.id
differentIdeal
β€”IsDedekindDomain.toIsDomain
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
IsScalarTower.right
Ideal.dvd_iff_le
Ideal.map_le_iff_le_comap
Eq.le
Ideal.LiesOver.over
pow_one
pow_sub_one_dvd_differentIdeal
pow_two
mul_dvd_mul_left
Iff.not
Ideal.map_eq_bot_iff_of_injective
RingHom.instRingHomClass
FaithfulSMul.algebraMap_injective
Submodule.mul_bot
IsScalarTower.left
Ideal.bot_mul
IsDedekindDomainDvr.isIntegrallyClosed
IsDedekindDomain.isDedekindDomainDvr
Ideal.instIsTwoSided_1
Ideal.Quotient.eq_zero_iff_mem
Algebra.trace_quotient_eq_of_isDedekindDomain
mul_comm
IsScalarTower.of_algebraMap_eq'
Module.Finite.of_restrictScalars_finite
Module.Finite.quotient
Ideal.prime_iff_isPrime
Ideal.IsMaximal.isPrime'
Ideal.isCoprime_iff_gcd
Irreducible.gcd_eq_one_iff
Prime.irreducible
Ideal.isCancelMulZero
RingEquiv.map_mul'
RingEquiv.map_add'
Ideal.quotientMulEquivQuotientProd_snd
Algebra.trace_eq_of_algEquiv
Algebra.trace_prod_apply
Module.free_of_finite_type_torsion_free'
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
Ideal.Quotient.isDomain
module_finite_of_liesOver
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Algebra.trace_eq_zero_of_not_isSeparable
LinearMap.zero_apply
zero_add
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Localization.isLocalization
Function.Involutive.injective
inv_involutive
FractionalIdeal.coeIdeal_mul
inv_div
mul_div_assoc
div_self
mul_one
inv_inv
RingHomSurjective.ids
LinearMap.IsScalarTower.compatibleSMul
FractionRing.instIsScalarTower
OreLocalization.instIsScalarTower
differentialIdeal_le_iff
instFiniteDimensionalFractionRingOfFinite
IsIntegralClosure.of_isIntegrallyClosed
Algebra.IsIntegral.of_finite
Submodule.map_le_iff_le_comap
Submodule.mem_comap
LinearMap.coe_restrictScalars
FractionalIdeal.coe_one
FractionalIdeal.mem_coe
FractionalIdeal.mem_div_iff_of_ne_zero
FractionalIdeal.mem_coeIdeal
Submodule.restrictScalars_mem
Ideal.mem_map_of_mem
Algebra.algebraMap_intTrace
smul_eq_mul
map_smul
SemilinearMapClass.toMulActionSemiHomClass
Algebra.smul_def
IsScalarTower.algebraMap_apply
isIntegral_discr_mul_of_mem_traceDual πŸ“–mathematicalIsIntegral
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
Module.Basis
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Module.Basis.instFunLike
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
Submodule.traceDual
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Algebra.toSMul
Algebra.discr
β€”Algebra.discr_isUnit_of_basis
Matrix.mulVec_cramer
Matrix.mulVec_injective_iff_isUnit
Matrix.isUnit_iff_isUnit_det
RingHomInvPair.ids
Finite.of_fintype
LinearEquiv.symm_apply_apply
Module.Basis.equivFun_symm_apply
IsIntegral.sum
smul_mul_assoc
IsScalarTower.right
LinearEquiv.map_smul
Algebra.discr_def
mul_comm
Algebra.traceMatrix_of_basis_mulVec
Matrix.mulVec_smul
Algebra.to_smulCommClass
Algebra.smul_def
RingHom.IsIntegralElem.mul
IsIntegral.algebraMap
Matrix.cramer_apply
IsIntegral.det
Matrix.updateCol_apply
Algebra.isIntegral_trace
mul_assoc
Submodule.mem_traceDual_iff_isIntegral
IsIntegralClosure.isIntegral_iff
Submodule.smul_mem
map_equiv_traceDual πŸ“–mathematicalβ€”Submodule.map
FractionRing
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
OreLocalization.instSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
OreLocalization.oreSetComm
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
OreLocalization.instAlgebra
Algebra.id
RingHom.id
RingHomSurjective.ids
AlgEquiv.toLinearMap
FractionRing.algEquiv
Submodule.traceDual
FractionRing.field
FractionRing.liftAlgebra
FractionRing.instFaithfulSMul
FractionRing.instIsScalarTower
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
IsScalarTower.right
Algebra.toSMul
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
OreLocalization.instIsScalarTower
CommMonoid.toMonoid
Monoid.toMulAction
IsScalarTower.left
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”IsScalarTower.right
RingHomSurjective.ids
FractionRing.instFaithfulSMul
FractionRing.instIsScalarTower
OreLocalization.instIsScalarTower
IsScalarTower.left
RingHomInvPair.ids
RingHomSurjective.invPair
Submodule.map_equiv_eq_comap_symm
Submodule.ext
Equiv.forall_congr
AlgEquiv.symm_apply_apply
Algebra.trace_eq_of_equiv_equiv
RingHom.ext
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
IsFractionRing.algEquiv_commutes
Localization.isLocalization
AlgEquivClass.toRingEquivClass
AlgEquiv.instAlgEquivClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingEquivClass.toNonUnitalRingHomClass
AlgEquiv.apply_symm_apply
not_dvd_differentIdeal_iff πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
Semiring.toModule
IsScalarTower.right
Algebra.id
differentIdeal
Algebra.IsUnramifiedAt
β€”IsDedekindDomain.toIsDomain
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
IsScalarTower.right
eq_or_ne
IsDedekindDomainDvr.isIntegrallyClosed
IsDedekindDomain.isDedekindDomainDvr
Submonoid.ext
IsDomain.to_noZeroDivisors
Ideal.one_notMem
Localization.isLocalization
Algebra.FormallyUnramified.iff_of_equiv
OreLocalization.instIsScalarTower
Algebra.FormallyUnramified.iff_isSeparable
Algebra.EssFiniteType.of_finiteType
Module.Finite.finiteType
instFiniteDimensionalFractionRingOfFinite
Algebra.FormallyUnramified.comp
FractionRing.instIsScalarTower
IsScalarTower.left
Algebra.FormallyUnramified.instLocalization
Algebra.FormallyUnramified.inst
Ideal.eq_bot_of_comap_eq_bot
Algebra.IsIntegral.of_finite
Iff.not
Ideal.map_eq_bot_iff_of_injective
RingHom.instRingHomClass
FaithfulSMul.algebraMap_injective
Ideal.IsPrime.isMaximal
IsDedekindDomainDvr.ring_dimensionLEOne
Ideal.IsPrime.under
Ideal.over_under
instIsLocalHomAtPrimeRingHomAlgebraMap
Localization.AtPrime.isLocalRing
Algebra.isUnramifiedAt_iff_map_eq
Mathlib.Tactic.Contrapose.contraposeβ‚‚
dvd_differentIdeal_of_not_isSeparable
Ideal.IsMaximal.under
instIsSeparableResidueFieldOfQuotientIdeal
Ideal.IsDedekindDomain.ramificationIdx_eq_one_iff
Ideal.map_comap_le
Ideal.ramificationIdx_spec
pow_one
Mathlib.Tactic.Contrapose.contraposeβ‚„
pow_sub_one_dvd_differentIdeal
Ideal.uniqueFactorizationMonoid
Ideal.eq_prime_pow_mul_coprime
not_dvd_differentIdeal_of_isCoprime_of_isSeparable
Ideal.isCoprime_iff_sup_eq
Ideal.ramificationIdx_eq_one_of_isUnramifiedAt
IsDedekindDomainDvr.toIsNoetherian
Ideal.IsDedekindDomain.ramificationIdx_eq_normalizedFactors_count
instIsSeparableQuotientIdealOfResidueField
not_dvd_differentIdeal_of_intTrace_not_mem πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.mul
Semiring.toModule
IsScalarTower.right
Algebra.id
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
DFunLike.coe
LinearMap
RingHom.id
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
LinearMap.instFunLike
Algebra.intTrace
IsDedekindDomainDvr.isIntegrallyClosed
IsDedekindDomain.isDedekindDomainDvr
IsDedekindDomain.toIsDomain
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
differentIdeal
β€”IsDedekindDomain.toIsDomain
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
IsScalarTower.right
IsDedekindDomainDvr.isIntegrallyClosed
IsDedekindDomain.isDedekindDomainDvr
Ideal.map_bot
RingHom.instRingHomClass
IsDomain.to_noZeroDivisors
Ideal.zero_eq_bot
zero_dvd_iff
differentIdeal_ne_bot
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
IsIntegralClosure.isLocalization
Localization.isLocalization
FractionRing.instIsScalarTower
OreLocalization.instIsScalarTower
IsScalarTower.left
IsIntegralClosure.of_isIntegrallyClosed
Algebra.IsIntegral.of_finite
Algebra.IsSeparable.isAlgebraic
FractionRing.instNontrivial
Module.Finite.of_isLocalization
Ideal.dvd_iff_le
LE.le.trans_eq
mul_le_mul_left
Submodule.instMulRightMono
FractionalIdeal.coeIdeal_le_coeIdeal'
le_rfl
mul_le_mul_right
FractionalIdeal.instMulLeftMono
coeIdeal_differentIdeal
FractionalIdeal.coeIdeal_mul
FractionalIdeal.mul_induction_on
mul_inv_cancel_leftβ‚€
NeZero.one
FractionalIdeal.instNontrivialNonZeroDivisors
Submodule.span_induction
FractionalIdeal.mem_dual
RingHom.map_one
Ideal.mul_mem_left
Algebra.linearMap_apply
mul_comm
IsScalarTower.algebraMap_apply
Algebra.smul_def
LinearMap.map_smul_of_tower
LinearMap.IsScalarTower.compatibleSMul
mul_one
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
MulZeroClass.mul_zero
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.self
map_add
SemilinearMapClass.toAddHomClass
mul_add
Distrib.leftDistribClass
Submodule.add_mem
mul_left_comm
mul_assoc
Submodule.smul_mem
IsLocalization.injective
Algebra.algebraMap_intTrace
not_dvd_differentIdeal_of_isCoprime πŸ“–mathematicalIsCoprime
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Submodule.mul
Semiring.toModule
IsScalarTower.right
Algebra.id
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
differentIdeal
β€”IsDedekindDomain.toIsDomain
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
IsScalarTower.right
Ideal.IsMaximal.eq_of_le
Ideal.IsMaximal.ne_top
Ideal.map_le_iff_le_comap
Ideal.mul_le_right
Ideal.instIsTwoSided_1
not_dvd_differentIdeal_of_isCoprime_of_isSeparable
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsAlgebraic.of_finite
IsLocalRing.toNontrivial
Field.instIsLocalRing
module_finite_of_liesOver
PerfectField.ofFinite
not_dvd_differentIdeal_of_isCoprime_of_isSeparable πŸ“–mathematicalIsCoprime
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Submodule.mul
Semiring.toModule
IsScalarTower.right
Algebra.id
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
differentIdeal
β€”IsDedekindDomain.toIsDomain
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
IsScalarTower.right
Ideal.instIsTwoSided_1
RingHom.instRingHomClass
Ideal.map_le_iff_le_comap
Ideal.mul_le_left
IsScalarTower.of_algebraMap_eq'
Module.Finite.of_restrictScalars_finite
Module.Finite.quotient
Algebra.trace_ne_zero
module_finite_of_liesOver
RingEquiv.map_mul'
RingEquiv.map_add'
Ideal.Quotient.mk_surjective
not_dvd_differentIdeal_of_intTrace_not_mem
Ideal.quotientMulEquivQuotientProd_snd
AlgEquiv.apply_symm_apply
IsDedekindDomainDvr.isIntegrallyClosed
IsDedekindDomain.isDedekindDomainDvr
Ideal.Quotient.eq_zero_iff_mem
Algebra.trace_quotient_eq_of_isDedekindDomain
Algebra.trace_eq_of_algEquiv
Algebra.trace_prod_apply
Module.free_of_finite_type_torsion_free'
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
Ideal.Quotient.isDomain
Ideal.IsMaximal.isPrime'
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
add_zero
pow_sub_one_dvd_differentIdeal πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
Semiring.toModule
IsScalarTower.right
Algebra.id
Submodule.instPowNat
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
differentIdealβ€”IsDedekindDomain.toIsDomain
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
IsScalarTower.right
IsIntegralClosure.isLocalization
Localization.isLocalization
FractionRing.instIsScalarTower
OreLocalization.instIsScalarTower
IsScalarTower.left
IsIntegralClosure.of_isIntegrallyClosed
IsDedekindDomainDvr.isIntegrallyClosed
IsDedekindDomain.isDedekindDomainDvr
Algebra.IsIntegral.of_finite
Algebra.IsSeparable.isAlgebraic
FractionRing.instNontrivial
IsDomain.to_noZeroDivisors
Module.Finite.of_isLocalization
pow_zero
one_dvd
pow_sub_one_dvd_differentIdeal_aux
pow_sub_one_dvd_differentIdeal_aux πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
Semiring.toModule
IsScalarTower.right
Algebra.id
Submodule.instPowNat
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
differentIdealβ€”IsScalarTower.right
Dvd.dvd.trans
pow_dvd_pow
Iff.not
Ideal.map_eq_bot_iff_of_injective
RingHom.instRingHomClass
FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
Submodule.mul_bot
Ideal.zero_eq_bot
zero_dvd_iff
zero_pow
mul_comm
pow_one
mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
Ideal.isCancelMulZero
pow_ne_zero
isReduced_of_noZeroDivisors
Ideal.instNoZeroDivisors
IsDomain.to_noZeroDivisors
mul_assoc
mul_pow
pow_add
IsDedekindDomainDvr.isIntegrallyClosed
IsDedekindDomain.isDedekindDomainDvr
Ideal.instIsTwoSided_1
Ideal.Quotient.eq_zero_iff_mem
Algebra.trace_quotient_eq_of_isDedekindDomain
isNilpotent_iff_eq_zero
Ideal.Quotient.noZeroDivisors
Ideal.IsMaximal.isPrime'
Algebra.isNilpotent_trace_of_isNilpotent
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
Ideal.dvd_iff_le
Ideal.pow_mem_pow
Function.Involutive.injective
inv_involutive
inv_inv
FractionalIdeal.coeIdeal_mul
inv_div
mul_div_assoc
div_self
mul_one
RingHomSurjective.ids
LinearMap.IsScalarTower.compatibleSMul
differentialIdeal_le_iff
Submodule.map_le_iff_le_comap
Submodule.mem_comap
LinearMap.coe_restrictScalars
FractionalIdeal.coe_one
FractionalIdeal.mem_coe
FractionalIdeal.mem_div_iff_of_ne_zero
FractionalIdeal.mem_coeIdeal
Submodule.restrictScalars_mem
Ideal.mem_map_of_mem
Algebra.algebraMap_intTrace
smul_eq_mul
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
Algebra.smul_def
IsScalarTower.algebraMap_apply
traceForm_dualSubmodule_adjoin πŸ“–mathematicalAlgebra.adjoin
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Set
Set.instSingletonSet
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
IsIntegral
DivisionRing.toRing
Field.toDivisionRing
LinearMap.BilinForm.dualSubmodule
Ring.toAddCommGroup
Algebra.toModule
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toSemiring
Algebra.traceForm
DFunLike.coe
OrderEmbedding
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
Submodule.instAddCommMonoidWithOne
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Submodule.pointwiseDistribMulAction
Module.toDistribMulAction
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
IsScalarTower.to_smulCommClass'
IsScalarTower.right
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
LinearMap
RingHom.id
Polynomial.module
LinearMap.instFunLike
Polynomial.derivative
minpoly
β€”Algebra.IsIntegral.isIntegral
Algebra.IsAlgebraic.isIntegral
Algebra.IsSeparable.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
instIsDomain
IsDedekindDomainDvr.isIntegrallyClosed
IsDedekindDomain.isDedekindDomainDvr
IsPrincipalIdealRing.isDedekindDomain
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
SetLike.mem_coe
Algebra.subset_adjoin
Set.mem_singleton
Algebra.adjoin.powerBasis'_gen
traceForm_nondegenerate
Finite.of_fintype
Module.Basis.traceDual_powerBasis_eq
Submodule.span_range_natDegree_eq_adjoin
minpoly.monic
minpoly.aeval
Set.ext
minpoly.isIntegrallyClosed_eq_field_fractions'
Polynomial.Monic.natDegree_map
Finset.coe_image
Finset.coe_range
PowerBasis.basis_eq_pow
IsScalarTower.to_smulCommClass'
IsScalarTower.right
span_coeff_minpolyDiv
LinearMap.BilinForm.dualSubmodule_span_of_basis
Submodule.smul_span
div_eq_inv_mul
Set.image_congr
minpolyDiv_eq_of_isIntegrallyClosed
le_antisymm
Submodule.span_le
Submodule.subset_span
Polynomial.coeff_eq_zero_of_natDegree_lt
natDegree_minpolyDiv_succ
PowerBasis.natDegree_minpoly
MulZeroClass.mul_zero
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass

---

← Back to Index