Documentation

Mathlib.RingTheory.DedekindDomain.Different

The different ideal #

Main definition #

Main results #

TODO #

noncomputable def Submodule.traceDual (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] (I : Submodule B L) :

Under the AKLB setting, Iแต› := traceDual A K (I : Submodule B L) is the Submodule B L such that x โˆˆ Iแต› โ†” โˆ€ y โˆˆ I, Tr(x, y) โˆˆ A

Equations
    Instances For
      theorem Submodule.mem_traceDual {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] {I : Submodule B L} {x : L} :
      x โˆˆ traceDual A K I โ†” โˆ€ a โˆˆ I, ((Algebra.traceForm K L) x) a โˆˆ (algebraMap A K).range
      theorem Submodule.le_traceDual_iff_map_le_one {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] {I J : Submodule B L} :
      I โ‰ค traceDual A K J โ†” map (โ†‘A (Algebra.trace K L)) (restrictScalars A (I * J)) โ‰ค 1
      theorem Submodule.le_traceDual_mul_iff {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] {I J J' : Submodule B L} :
      I โ‰ค traceDual A K (J * J') โ†” I * J โ‰ค traceDual A K J'
      theorem Submodule.le_traceDual {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] {I J : Submodule B L} :
      theorem Submodule.le_traceDual_comm {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] {I J : Submodule B L} :
      theorem Submodule.le_traceDual_traceDual {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] {I : Submodule B L} :
      @[simp]
      theorem Submodule.restrictScalars_traceDual {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] {I : Submodule B L} :
      theorem Submodule.traceDual_span_of_basis (A : Type u_1) {K : Type u_2} {L : Type u} {B : Type u_4} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [FiniteDimensional K L] [Algebra.IsSeparable K L] (I : Submodule B L) {ฮน : Type u_3} [Finite ฮน] [DecidableEq ฮน] (b : Module.Basis ฮน K L) (hb : restrictScalars A I = span A (Set.range โ‡‘b)) :

      If the module I is spanned by the basis b, then its traceDual module is spanned by b.traceDual.

      @[simp]
      theorem Submodule.traceDual_bot {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] :
      theorem Submodule.mem_traceDual_iff_isIntegral {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsFractionRing A K] [IsIntegrallyClosed A] {I : Submodule B L} {x : L} :
      x โˆˆ traceDual A K I โ†” โˆ€ a โˆˆ I, IsIntegral A (((Algebra.traceForm K L) x) a)
      theorem Submodule.one_le_traceDual_one {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsFractionRing A K] [IsIntegrallyClosed A] [FiniteDimensional K L] [IsIntegralClosure B A L] :
      theorem isIntegral_discr_mul_of_mem_traceDual {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsFractionRing A K] [IsIntegrallyClosed A] [FiniteDimensional K L] [IsIntegralClosure B A L] [Algebra.IsSeparable K L] (I : Submodule B L) {ฮน : Type u_4} [DecidableEq ฮน] [Fintype ฮน] {b : Module.Basis ฮน K L} (hb : โˆ€ (i : ฮน), IsIntegral A (b i)) {a x : L} (ha : a โˆˆ I) (hx : x โˆˆ Submodule.traceDual A K I) :
      IsIntegral A (Algebra.discr K โ‡‘b โ€ข a * x)

      If b is an A-integral basis of L with discriminant b, then d โ€ข a * x is integral over A for all a โˆˆ I and x โˆˆ Iแต›.

      noncomputable def FractionalIdeal.dual (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsFractionRing A K] [IsIntegrallyClosed A] [FiniteDimensional K L] [IsIntegralClosure B A L] [Algebra.IsSeparable K L] [IsDomain A] [IsFractionRing B L] [Nontrivial B] [NoZeroDivisors B] (I : FractionalIdeal (nonZeroDivisors B) L) :

      The dual of a non-zero fractional ideal is the dual of the submodule under the trace form.

      Equations
        Instances For
          theorem FractionalIdeal.coe_dual (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] {I : FractionalIdeal (nonZeroDivisors B) L} (hI : I โ‰  0) :
          โ†‘(dual A K I) = Submodule.traceDual A K โ†‘I
          @[simp]
          theorem FractionalIdeal.coe_dual_one (A : Type u_1) (K : Type u_2) (L : Type u) (B : Type u_3) [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] :
          โ†‘(dual A K 1) = Submodule.traceDual A K 1
          @[simp]
          theorem FractionalIdeal.dual_zero (A : Type u_1) (K : Type u_2) (L : Type u) (B : Type u_3) [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] :
          dual A K 0 = 0
          theorem FractionalIdeal.mem_dual {A : Type u_1} {K : Type u_2} {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] {I : FractionalIdeal (nonZeroDivisors B) L} (hI : I โ‰  0) {x : L} :
          x โˆˆ dual A K I โ†” โˆ€ a โˆˆ I, ((Algebra.traceForm K L) x) a โˆˆ (algebraMap A K).range
          theorem FractionalIdeal.dual_ne_zero (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] {I : FractionalIdeal (nonZeroDivisors B) L} (hI : I โ‰  0) :
          dual A K I โ‰  0
          theorem FractionalIdeal.le_dual_inv_aux (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] {I J : FractionalIdeal (nonZeroDivisors B) L} (hI : I โ‰  0) (hIJ : I * J โ‰ค 1) :
          J โ‰ค dual A K I
          theorem FractionalIdeal.dual_div_dual (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] {I J : FractionalIdeal (nonZeroDivisors B) L} :
          dual A K J / dual A K I = I / J
          theorem FractionalIdeal.dual_mul_self (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] {I : FractionalIdeal (nonZeroDivisors B) L} (hI : I โ‰  0) :
          dual A K I * I = dual A K 1
          theorem FractionalIdeal.self_mul_dual (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] {I : FractionalIdeal (nonZeroDivisors B) L} (hI : I โ‰  0) :
          I * dual A K I = dual A K 1
          @[simp]
          theorem FractionalIdeal.dual_dual (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] (I : FractionalIdeal (nonZeroDivisors B) L) :
          dual A K (dual A K I) = I
          @[simp]
          theorem FractionalIdeal.dual_le_dual (A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] {I J : FractionalIdeal (nonZeroDivisors B) L} (hI : I โ‰  0) (hJ : J โ‰  0) :
          theorem FractionalIdeal.trace_mem_dual_one (A : Type u_1) (K : Type u_2) (L : Type u) (B : Type u_5) [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] (C : Type u_3) (M : Type u_4) [CommRing C] [IsDedekindDomain C] [Field M] [Algebra C M] [IsFractionRing C M] [Algebra A C] [Algebra B C] [Algebra A M] [Algebra B M] [Algebra K M] [Algebra L M] [IsScalarTower A C M] [IsScalarTower A K M] [IsScalarTower B C M] [IsScalarTower B L M] [IsScalarTower K L M] [IsIntegralClosure C A M] [FiniteDimensional K M] [FiniteDimensional L M] [Algebra.IsSeparable K M] (x : M) (hx : x โˆˆ dual A K 1) :
          (Algebra.trace L M) x โˆˆ dual A K 1
          theorem FractionalIdeal.smul_mem_dual_one (A : Type u_1) (K : Type u_2) (L : Type u) (B : Type u_5) [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] (C : Type u_3) (M : Type u_4) [CommRing C] [IsDedekindDomain C] [Field M] [Algebra C M] [IsFractionRing C M] [Algebra A C] [Algebra B C] [Algebra A M] [Algebra B M] [Algebra K M] [Algebra L M] [IsScalarTower A C M] [IsScalarTower A K M] [IsScalarTower B C M] [IsScalarTower B L M] [IsScalarTower K L M] [IsIntegralClosure C A M] [FiniteDimensional K M] [FiniteDimensional L M] [Algebra.IsSeparable K M] [IsIntegralClosure C B M] [Algebra.IsSeparable L M] {x : L} (hx : x โˆˆ dual A K 1) {y : M} (hy : y โˆˆ dual B L 1) :
          noncomputable def differentIdeal (A : Type u_1) (B : Type u_3) [CommRing A] [CommRing B] [Algebra A B] [IsDomain A] [IsDedekindDomain B] [Module.IsTorsionFree A B] :

          The different ideal of an extension of integral domains B/A is the inverse of the dual of A as an ideal of B. See coeIdeal_differentIdeal and coeSubmodule_differentIdeal.

          Equations
            Instances For
              theorem pow_sub_one_dvd_differentIdeal_aux (A : Type u_1) (K : Type u_2) (L : Type u) {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsDedekindDomain A] [IsDedekindDomain B] [Module.IsTorsionFree A B] [Module.Finite A B] {p : Ideal A} [p.IsMaximal] (P : Ideal B) {e : โ„•} (he : e โ‰  0) (hp : p โ‰  โŠฅ) (hP : P ^ e โˆฃ Ideal.map (algebraMap A B) p) :

              A prime does not divide the different ideal iff it is unramified.

              A prime divides the different ideal iff it is ramified.