Documentation Verification Report

StandardEtale

πŸ“ Source: Mathlib/RingTheory/Etale/StandardEtale.lean

Statistics

MetricCount
DefinitionsIsStandardEtale, StandardEtalePair, HasMap, X, equivAwayAdjoinRoot, equivAwayQuotient, equivMvPolynomialQuotient, equivPolynomialQuotient, f, g, homEquiv, instAlgebraRing, instCommRingRing, map, StandardEtalePresentation, P, baseChange, equivRing, mapEquiv, toPresentation, toSubmersivePresentation, x
22
Theoremsnonempty_standardEtalePresentation, of_equiv, of_isLocalizationAway, of_surjective, instEtaleOfIsStandardEtale, instIsStandardEtale, instIsStandardEtaleRing, instIsStandardEtaleTensorProduct, isUnit_derivative_f, map, map_algebraMap, aeval_X_g_mul_mk_X, cond, equivMvPolynomialQuotient_symm_apply, existsUnique_hasMap_of_hasMap_quotient_of_sq_eq_bot, hasMap_X, homEquiv_apply_coe, homEquiv_symm_apply, hom_ext, hom_ext_iff, instEtaleRing, instFormallyEtaleRing, inv_aeval_X_g, lift_X, lift_X_left, map_f, map_g, monic_f, aeval_val_equivMvPolynomial, equivRing_symm_X, equivRing_x, exists_mul_aeval_x_g_pow_eq_aeval_x, hasMap, hom_ext, lift_bijective, toPresentation_algebra_algebraMap_apply, toPresentation_algebra_smul, toPresentation_relation, toPresentation_val, toPresentation_Οƒ', toSubmersivePresentation_jacobian, toSubmersivePresentation_map, toSubmersivePresentation_toPreSubmersivePresentation_toPresentation
43
Total65

Algebra

Definitions

NameCategoryTheorems
IsStandardEtale πŸ“–CompData
9 mathmath: HasStandardEtaleSurjectionOn.isStandardEtale, instIsStandardEtaleRing, IsSmoothAt.exists_isStandardEtale_mvPolynomial, IsStandardEtale.of_equiv, IsEtaleAt.exists_isStandardEtale, IsStandardEtale.of_surjective, instIsStandardEtale, IsStandardEtale.of_isLocalizationAway, instIsStandardEtaleTensorProduct

Theorems

NameKindAssumesProvesValidatesDepends On
instEtaleOfIsStandardEtale πŸ“–mathematicalβ€”Etaleβ€”Etale.of_equiv
IsStandardEtale.nonempty_standardEtalePresentation
StandardEtalePair.instEtaleRing
instIsStandardEtale πŸ“–mathematicalβ€”IsStandardEtale
id
CommRing.toCommSemiring
β€”Polynomial.derivative_X
mul_one
MulZeroClass.mul_zero
add_zero
pow_zero
Polynomial.aeval_X
Polynomial.eval_one
Ideal.Quotient.eq_zero_iff_mem
Ideal.subset_span
Set.mem_insert
ext_id
StandardEtalePair.hom_ext
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
RingHom.instRingHomClass
AlgEquiv.bijective
instIsStandardEtaleRing πŸ“–mathematicalβ€”IsStandardEtale
StandardEtalePair.Ring
StandardEtalePair.instCommRingRing
StandardEtalePair.instAlgebraRing
β€”StandardEtalePair.hasMap_X
StandardEtalePair.lift_X_left
Function.bijective_id
instIsStandardEtaleTensorProduct πŸ“–mathematicalβ€”IsStandardEtale
TensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toModule
CommSemiring.toSemiring
TensorProduct.instCommRing
TensorProduct.leftAlgebra
id
to_smulCommClass
β€”to_smulCommClass
IsStandardEtale.nonempty_standardEtalePresentation

Algebra.IsStandardEtale

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty_standardEtalePresentation πŸ“–mathematicalβ€”StandardEtalePresentationβ€”β€”
of_equiv πŸ“–mathematicalβ€”Algebra.IsStandardEtaleβ€”nonempty_standardEtalePresentation
of_isLocalizationAway πŸ“–mathematicalβ€”Algebra.IsStandardEtaleβ€”nonempty_standardEtalePresentation
StandardEtalePresentation.exists_mul_aeval_x_g_pow_eq_aeval_x
StandardEtalePair.monic_f
StandardEtalePair.cond
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_eq_const
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
IsLocalization.Away.mul
OreLocalization.instIsScalarTower
IsScalarTower.right
Localization.isLocalization
MonoidHom.instMonoidHomClass
Polynomial.algHom_ext
IsLocalization.lift_eq
AdjoinRoot.lift_root
StandardEtalePresentation.equivRing_symm_X
Polynomial.aeval_X
Submonoid.map_powers
IsLocalization.Away.of_associated
IsUnit.pow
StandardEtalePresentation.hasMap
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
RingEquiv.map_mul'
RingEquiv.map_add'
AlgEquivClass.toRingEquivClass
AlgEquiv.instAlgEquivClass
IsScalarTower.algebraMap_apply
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
IsLocalization.map_eq
AlgEquiv.commutes
IsScalarTower.algebraMap_eq
of_equiv
Algebra.instIsStandardEtaleRing
of_surjective πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
Algebra.IsStandardEtaleβ€”IsScalarTower.of_algebraMap_eq'
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp_algebraMap
RingHom.instRingHomClass
IsScalarTower.right
Ideal.isIdempotentElem_iff_of_fg
Algebra.FinitePresentation.ker_fG_of_surjective
Algebra.Etale.finitePresentation
Algebra.instEtaleOfIsStandardEtale
Algebra.FormallyEtale.iff_of_surjective
Algebra.FormallyEtale.of_restrictScalars
Algebra.FormallyEtale.instFormallyUnramified
Algebra.Etale.formallyEtale
IsLocalization.away_of_isIdempotentElem
IsIdempotentElem.one_sub
sub_sub_cancel
of_isLocalizationAway

StandardEtalePair

Definitions

NameCategoryTheorems
HasMap πŸ“–MathDef
4 mathmath: homEquiv_symm_apply, StandardEtalePresentation.hasMap, homEquiv_apply_coe, hasMap_X
X πŸ“–CompOp
10 mathmath: inv_aeval_X_g, homEquiv_apply_coe, hasMap_X, equivMvPolynomialQuotient_symm_apply, lift_X, StandardEtalePresentation.equivRing_x, hom_ext_iff, aeval_X_g_mul_mk_X, lift_X_left, StandardEtalePresentation.equivRing_symm_X
equivAwayAdjoinRoot πŸ“–CompOpβ€”
equivAwayQuotient πŸ“–CompOpβ€”
equivMvPolynomialQuotient πŸ“–CompOp
6 mathmath: StandardEtalePresentation.toPresentation_algebra_smul, equivMvPolynomialQuotient_symm_apply, StandardEtalePresentation.toPresentation_Οƒ', StandardEtalePresentation.toPresentation_algebra_algebraMap_apply, StandardEtalePresentation.toPresentation_val, StandardEtalePresentation.toPresentation_relation
equivPolynomialQuotient πŸ“–CompOpβ€”
f πŸ“–CompOp
13 mathmath: inv_aeval_X_g, StandardEtalePresentation.toPresentation_algebra_smul, equivMvPolynomialQuotient_symm_apply, monic_f, map_f, StandardEtalePresentation.toSubmersivePresentation_jacobian, StandardEtalePresentation.toPresentation_Οƒ', HasMap.isUnit_derivative_f, cond, aeval_X_g_mul_mk_X, StandardEtalePresentation.toPresentation_algebra_algebraMap_apply, StandardEtalePresentation.toPresentation_val, StandardEtalePresentation.toPresentation_relation
g πŸ“–CompOp
12 mathmath: inv_aeval_X_g, StandardEtalePresentation.toPresentation_algebra_smul, equivMvPolynomialQuotient_symm_apply, map_g, StandardEtalePresentation.toSubmersivePresentation_jacobian, StandardEtalePresentation.exists_mul_aeval_x_g_pow_eq_aeval_x, StandardEtalePresentation.toPresentation_Οƒ', cond, aeval_X_g_mul_mk_X, StandardEtalePresentation.toPresentation_algebra_algebraMap_apply, StandardEtalePresentation.toPresentation_val, StandardEtalePresentation.toPresentation_relation
homEquiv πŸ“–CompOp
2 mathmath: homEquiv_symm_apply, homEquiv_apply_coe
instAlgebraRing πŸ“–CompOp
20 mathmath: inv_aeval_X_g, Algebra.instIsStandardEtaleRing, homEquiv_symm_apply, StandardEtalePresentation.toPresentation_algebra_smul, homEquiv_apply_coe, hasMap_X, equivMvPolynomialQuotient_symm_apply, instFormallyEtaleRing, lift_X, StandardEtalePresentation.equivRing_x, StandardEtalePresentation.lift_bijective, hom_ext_iff, StandardEtalePresentation.toPresentation_Οƒ', aeval_X_g_mul_mk_X, StandardEtalePresentation.toPresentation_algebra_algebraMap_apply, StandardEtalePresentation.toPresentation_val, lift_X_left, StandardEtalePresentation.toPresentation_relation, instEtaleRing, StandardEtalePresentation.equivRing_symm_X
instCommRingRing πŸ“–CompOp
20 mathmath: inv_aeval_X_g, Algebra.instIsStandardEtaleRing, homEquiv_symm_apply, StandardEtalePresentation.toPresentation_algebra_smul, homEquiv_apply_coe, hasMap_X, equivMvPolynomialQuotient_symm_apply, instFormallyEtaleRing, lift_X, StandardEtalePresentation.equivRing_x, StandardEtalePresentation.lift_bijective, hom_ext_iff, StandardEtalePresentation.toPresentation_Οƒ', aeval_X_g_mul_mk_X, StandardEtalePresentation.toPresentation_algebra_algebraMap_apply, StandardEtalePresentation.toPresentation_val, lift_X_left, StandardEtalePresentation.toPresentation_relation, instEtaleRing, StandardEtalePresentation.equivRing_symm_X
map πŸ“–CompOp
3 mathmath: map_g, map_f, HasMap.map_algebraMap

Theorems

NameKindAssumesProvesValidatesDepends On
aeval_X_g_mul_mk_X πŸ“–mathematicalβ€”Ring
HasQuotient.Quotient
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Ideal
Ring.toSemiring
Polynomial.ring
CommRing.toRing
Ideal.instHasQuotient
Ideal.span
Set
Set.instInsert
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
f
Set.instSingletonSet
Polynomial.instSub
Polynomial.instMul
Polynomial.X
g
Polynomial.instOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRingRing
AlgHom
Polynomial.algebraOfAlgebra
Algebra.id
instAlgebraRing
AlgHom.funLike
Polynomial.aeval
X
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Polynomial.commRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”Ideal.instIsTwoSided_1
Polynomial.algHom_ext
Polynomial.aeval_X
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
sub_eq_zero
map_sub
RingHomClass.toAddMonoidHomClass
mul_comm
Ideal.Quotient.eq_zero_iff_mem
Ideal.subset_span
Set.mem_insert_of_mem
cond πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.instAdd
Polynomial.instMul
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Polynomial.semiring
Polynomial.module
Semiring.toModule
LinearMap.instFunLike
Polynomial.derivative
f
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
g
β€”β€”
equivMvPolynomialQuotient_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
HasQuotient.Quotient
MvPolynomial
CommRing.toCommSemiring
Ideal
CommSemiring.toSemiring
MvPolynomial.commSemiring
Ideal.instHasQuotient_1
MvPolynomial.instCommRingMvPolynomial
Ideal.span
Set
Set.instInsert
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
MvPolynomial.algebra
AlgEquiv.instFunLike
Polynomial.Bivariate.equivMvPolynomial
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
f
Set.instSingletonSet
Polynomial.instSub
Polynomial.ring
CommRing.toRing
Polynomial.instMul
Polynomial.X
g
Polynomial.instOne
Ring
Ideal.Quotient.semiring
instCommRingRing
Ideal.instAlgebraQuotient
instAlgebraRing
AlgEquiv.symm
equivMvPolynomialQuotient
Ring.toSemiring
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
MvPolynomial.X
X
β€”Ideal.instIsTwoSided_1
Polynomial.Bivariate.equivMvPolynomial_symm_X_0
existsUnique_hasMap_of_hasMap_quotient_of_sq_eq_bot πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Bot.bot
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
HasMap
HasQuotient.Quotient
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.commRing
Ideal.instAlgebraQuotient
DFunLike.coe
RingHom
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
ExistsUnique
SetLike.instMembership
Submodule.setLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Ideal.instIsTwoSided_1
Ideal.Quotient.eq_zero_iff_mem
Polynomial.aeval_algHom_apply
AlgHom.algHomClass
Ideal.Quotient.mk_surjective
cond
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_const_eq
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
sub_mem
Submodule.addSubgroupClass
Ideal.mem_of_dvd
sub_one_dvd_pow_sub_one
map_one
MonoidHomClass.toOneHomClass
Ideal.mul_mem_right
sub_eq_iff_eq_add'
Eq.le
Ideal.pow_mem_pow
pow_two
Ideal.mul_mem_mul
Polynomial.aeval_add_of_sq_eq_zero
IsNilpotent.isUnit_quotient_mk_iff
IsScalarTower.right
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
add_zero
hasMap_X πŸ“–mathematicalβ€”HasMap
Ring
instCommRingRing
instAlgebraRing
X
β€”Ideal.instIsTwoSided_1
Polynomial.algHom_ext
Polynomial.aeval_X
Ideal.Quotient.eq_zero_iff_mem
Ideal.subset_span
Set.mem_insert
IsUnit.of_mul_eq_one
instIsDedekindFiniteMonoid
aeval_X_g_mul_mk_X
homEquiv_apply_coe πŸ“–mathematicalβ€”HasMap
DFunLike.coe
Equiv
AlgHom
Ring
CommRing.toCommSemiring
CommSemiring.toSemiring
instCommRingRing
instAlgebraRing
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
AlgHom.funLike
X
β€”β€”
homEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
HasMap
AlgHom
Ring
CommRing.toCommSemiring
CommSemiring.toSemiring
instCommRingRing
instAlgebraRing
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
lift
β€”β€”
hom_ext πŸ“–β€”DFunLike.coe
AlgHom
Ring
CommRing.toCommSemiring
CommSemiring.toSemiring
instCommRingRing
instAlgebraRing
AlgHom.funLike
X
β€”β€”Ideal.instIsTwoSided_1
Polynomial.algHom_ext
Polynomial.aeval_X
Ideal.Quotient.algHom_ext
Polynomial.algHom_ext'
hasMap_X
Units.mul_eq_one_iff_inv_eq
aeval_X_g_mul_mk_X
Units.coe_map_inv
Units.ext
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
IsUnit.unit.congr_simp
hom_ext_iff πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Ring
CommRing.toCommSemiring
CommSemiring.toSemiring
instCommRingRing
instAlgebraRing
AlgHom.funLike
X
β€”hom_ext
instEtaleRing πŸ“–mathematicalβ€”Algebra.Etale
Ring
instCommRingRing
instAlgebraRing
β€”instFormallyEtaleRing
Algebra.FinitePresentation.quotient
Submodule.fg_span
Polynomial.X_mul_C
Algebra.FinitePresentation.polynomial
Algebra.FinitePresentation.self
instFormallyEtaleRing πŸ“–mathematicalβ€”Algebra.FormallyEtale
Ring
instCommRingRing
instAlgebraRing
β€”Ideal.instIsTwoSided_1
Algebra.FormallyEtale.iff_comp_bijective
Function.Bijective.of_comp_iff
Equiv.bijective
Function.Bijective.of_comp_iff'
existsUnique_hasMap_of_hasMap_quotient_of_sq_eq_bot
add_sub_cancel_left
sub_eq_iff_eq_add'
add_sub_cancel
lift_X
Function.Surjective.forall
Ideal.Quotient.mk_surjective
inv_aeval_X_g πŸ“–mathematicalβ€”Units.val
Ring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRingRing
Units
Units.instInv
IsUnit.unit
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
instAlgebraRing
AlgHom.funLike
Polynomial.aeval
X
g
f
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsUnit
hasMap_X
RingHom
HasQuotient.Quotient
Ideal
Ring.toSemiring
Polynomial.ring
CommRing.toRing
Ideal.instHasQuotient
Ideal.span
Set
Set.instInsert
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
Set.instSingletonSet
Polynomial.instSub
Polynomial.instMul
Polynomial.X
Polynomial.instOne
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Polynomial.commRing
β€”hasMap_X
Ideal.instIsTwoSided_1
Units.mul_eq_one_iff_inv_eq
aeval_X_g_mul_mk_X
lift_X πŸ“–mathematicalHasMapDFunLike.coe
AlgHom
Ring
CommRing.toCommSemiring
CommSemiring.toSemiring
instCommRingRing
instAlgebraRing
AlgHom.funLike
lift
X
β€”Polynomial.aeval_C
Polynomial.map_X
Polynomial.eval_X
lift_X_left πŸ“–mathematicalβ€”lift
Ring
instCommRingRing
instAlgebraRing
X
hasMap_X
AlgHom.id
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”hom_ext
hasMap_X
lift_X
map_f πŸ“–mathematicalβ€”f
map
Polynomial.map
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”
map_g πŸ“–mathematicalβ€”g
map
Polynomial.map
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”
monic_f πŸ“–mathematicalβ€”Polynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
f
β€”β€”

StandardEtalePair.HasMap

Theorems

NameKindAssumesProvesValidatesDepends On
isUnit_derivative_f πŸ“–mathematicalStandardEtalePair.HasMapIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Polynomial.module
Semiring.toModule
LinearMap.instFunLike
Polynomial.derivative
StandardEtalePair.f
β€”StandardEtalePair.cond
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
MulZeroClass.zero_mul
add_zero
isUnit_of_dvd_unit
IsUnit.pow
map πŸ“–mathematicalStandardEtalePair.HasMapDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
β€”Polynomial.aeval_algHom
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
map_algebraMap πŸ“–mathematicalStandardEtalePair.HasMapStandardEtalePair.map
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”Polynomial.aeval_map_algebraMap

StandardEtalePresentation

Definitions

NameCategoryTheorems
P πŸ“–CompOp
11 mathmath: toPresentation_algebra_smul, hasMap, equivRing_x, toSubmersivePresentation_jacobian, exists_mul_aeval_x_g_pow_eq_aeval_x, lift_bijective, toPresentation_Οƒ', toPresentation_algebra_algebraMap_apply, toPresentation_val, toPresentation_relation, equivRing_symm_X
baseChange πŸ“–CompOpβ€”
equivRing πŸ“–CompOp
2 mathmath: equivRing_x, equivRing_symm_X
mapEquiv πŸ“–CompOpβ€”
toPresentation πŸ“–CompOp
7 mathmath: toPresentation_algebra_smul, toSubmersivePresentation_toPreSubmersivePresentation_toPresentation, toPresentation_Οƒ', aeval_val_equivMvPolynomial, toPresentation_algebra_algebraMap_apply, toPresentation_val, toPresentation_relation
toSubmersivePresentation πŸ“–CompOp
3 mathmath: toSubmersivePresentation_toPreSubmersivePresentation_toPresentation, toSubmersivePresentation_map, toSubmersivePresentation_jacobian
x πŸ“–CompOp
12 mathmath: toPresentation_algebra_smul, hasMap, equivRing_x, toSubmersivePresentation_jacobian, exists_mul_aeval_x_g_pow_eq_aeval_x, lift_bijective, toPresentation_Οƒ', aeval_val_equivMvPolynomial, toPresentation_algebra_algebraMap_apply, toPresentation_val, toPresentation_relation, equivRing_symm_X

Theorems

NameKindAssumesProvesValidatesDepends On
aeval_val_equivMvPolynomial πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.aeval
Algebra.Generators.val
Algebra.Presentation.toGenerators
toPresentation
AlgEquiv
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
AlgEquiv.instFunLike
Polynomial.Bivariate.equivMvPolynomial
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
Polynomial.aeval
x
β€”Polynomial.algHom_ext
Polynomial.Bivariate.equivMvPolynomial_C_X
MvPolynomial.aeval_X
hasMap
StandardEtalePair.equivMvPolynomialQuotient_symm_apply
StandardEtalePair.lift_X
Polynomial.aeval_X
equivRing_symm_X πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
StandardEtalePair.Ring
P
CommRing.toCommSemiring
CommSemiring.toSemiring
StandardEtalePair.instCommRingRing
StandardEtalePair.instAlgebraRing
AlgEquiv.instFunLike
AlgEquiv.symm
equivRing
StandardEtalePair.X
x
β€”StandardEtalePair.lift_X
hasMap
equivRing_x πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
StandardEtalePair.Ring
P
CommRing.toCommSemiring
CommSemiring.toSemiring
StandardEtalePair.instCommRingRing
StandardEtalePair.instAlgebraRing
AlgEquiv.instFunLike
equivRing
x
StandardEtalePair.X
β€”AlgEquiv.symm_apply_eq
equivRing_symm_X
exists_mul_aeval_x_g_pow_eq_aeval_x πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
x
StandardEtalePair.g
P
β€”AlgEquiv.surjective
IsLocalization.surj
Localization.isLocalization
AdjoinRoot.mk_surjective
AlgEquiv.injective
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
AlgEquiv.apply_symm_apply
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
equivRing_x
RingHom.instRingHomClass
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
IsLocalization.lift_eq
hasMap πŸ“–mathematicalβ€”StandardEtalePair.HasMap
P
x
β€”β€”
hom_ext πŸ“–β€”DFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
x
β€”β€”StandardEtalePair.hom_ext
equivRing_symm_X
AlgHom.ext
AlgEquiv.surjective
lift_bijective πŸ“–mathematicalβ€”Function.Bijective
StandardEtalePair.Ring
P
DFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
StandardEtalePair.instCommRingRing
StandardEtalePair.instAlgebraRing
AlgHom.funLike
StandardEtalePair.lift
x
hasMap
β€”β€”
toPresentation_algebra_algebraMap_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
Algebra.algebraMap
Algebra.Generators.algebra
Algebra.Presentation.toGenerators
toPresentation
MvPolynomial.evalβ‚‚
algebraMap
StandardEtalePair.Ring
P
AlgHom
StandardEtalePair.instCommRingRing
StandardEtalePair.instAlgebraRing
AlgHom.funLike
StandardEtalePair.lift
x
hasMap
HasQuotient.Quotient
Ideal
Ideal.instHasQuotient_1
MvPolynomial.instCommRingMvPolynomial
Ideal.span
Set
Set.instInsert
AlgEquiv
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
MvPolynomial.algebra
AlgEquiv.instFunLike
Polynomial.Bivariate.equivMvPolynomial
Polynomial.C
StandardEtalePair.f
Set.instSingletonSet
Polynomial.instSub
Polynomial.ring
CommRing.toRing
Polynomial.instMul
Polynomial.X
StandardEtalePair.g
Polynomial.instOne
Ideal.Quotient.semiring
Ideal.instAlgebraQuotient
AlgEquiv.symm
StandardEtalePair.equivMvPolynomialQuotient
Ring.toSemiring
Ideal.instHasQuotient
Ideal.Quotient.ring
MvPolynomial.X
β€”β€”
toPresentation_algebra_smul πŸ“–mathematicalβ€”MvPolynomial
CommRing.toCommSemiring
Algebra.toSMul
MvPolynomial.commSemiring
CommSemiring.toSemiring
Algebra.Generators.algebra
Algebra.Presentation.toGenerators
toPresentation
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
AlgHom
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.aeval
StandardEtalePair.Ring
P
StandardEtalePair.instCommRingRing
StandardEtalePair.instAlgebraRing
StandardEtalePair.lift
x
hasMap
HasQuotient.Quotient
Ideal
Ideal.instHasQuotient_1
MvPolynomial.instCommRingMvPolynomial
Ideal.span
Set
Set.instInsert
AlgEquiv
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
AlgEquiv.instFunLike
Polynomial.Bivariate.equivMvPolynomial
RingHom
RingHom.instFunLike
Polynomial.C
StandardEtalePair.f
Set.instSingletonSet
Polynomial.instSub
Polynomial.ring
CommRing.toRing
Polynomial.instMul
Polynomial.X
StandardEtalePair.g
Polynomial.instOne
Ideal.Quotient.semiring
Ideal.instAlgebraQuotient
AlgEquiv.symm
StandardEtalePair.equivMvPolynomialQuotient
Ring.toSemiring
Ideal.instHasQuotient
Ideal.Quotient.ring
MvPolynomial.X
β€”β€”
toPresentation_relation πŸ“–mathematicalβ€”Algebra.Presentation.relation
toPresentation
Matrix.vecCons
Algebra.Generators.Ring
Algebra.Generators.ofAlgHom
AlgHom.comp
MvPolynomial
CommRing.toCommSemiring
StandardEtalePair.Ring
P
CommSemiring.toSemiring
MvPolynomial.commSemiring
StandardEtalePair.instCommRingRing
MvPolynomial.algebra
Algebra.id
StandardEtalePair.instAlgebraRing
StandardEtalePair.lift
x
hasMap
HasQuotient.Quotient
Ideal
Ideal.instHasQuotient_1
MvPolynomial.instCommRingMvPolynomial
Ideal.span
Set
Set.instInsert
DFunLike.coe
AlgEquiv
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
AlgEquiv.instFunLike
Polynomial.Bivariate.equivMvPolynomial
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
StandardEtalePair.f
Set.instSingletonSet
Polynomial.instSub
Polynomial.ring
CommRing.toRing
Polynomial.instMul
Polynomial.X
StandardEtalePair.g
Polynomial.instOne
Ideal.Quotient.semiring
Ideal.instAlgebraQuotient
AlgHomClass.toAlgHom
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
AlgEquiv.symm
StandardEtalePair.equivMvPolynomialQuotient
Ideal.Quotient.mkₐ
SubNegMonoid.toSub
SubtractionMonoid.toSubNegMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.X
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Matrix.vecEmpty
β€”hasMap
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
Polynomial.X_mul_C
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
Polynomial.Bivariate.equivMvPolynomial_X
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
toPresentation_val πŸ“–mathematicalβ€”Algebra.Generators.val
Algebra.Presentation.toGenerators
toPresentation
DFunLike.coe
AlgHom
StandardEtalePair.Ring
P
CommRing.toCommSemiring
CommSemiring.toSemiring
StandardEtalePair.instCommRingRing
StandardEtalePair.instAlgebraRing
AlgHom.funLike
StandardEtalePair.lift
x
hasMap
AlgEquiv
HasQuotient.Quotient
MvPolynomial
Ideal
MvPolynomial.commSemiring
Ideal.instHasQuotient_1
MvPolynomial.instCommRingMvPolynomial
Ideal.span
Set
Set.instInsert
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
MvPolynomial.algebra
AlgEquiv.instFunLike
Polynomial.Bivariate.equivMvPolynomial
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
StandardEtalePair.f
Set.instSingletonSet
Polynomial.instSub
Polynomial.ring
CommRing.toRing
Polynomial.instMul
Polynomial.X
StandardEtalePair.g
Polynomial.instOne
Ideal.Quotient.semiring
Ideal.instAlgebraQuotient
AlgEquiv.symm
StandardEtalePair.equivMvPolynomialQuotient
Ring.toSemiring
Ideal.instHasQuotient
Ideal.Quotient.ring
MvPolynomial.X
β€”β€”
toPresentation_Οƒ' πŸ“–mathematicalβ€”Algebra.Generators.Οƒ'
Algebra.Presentation.toGenerators
toPresentation
MvPolynomial
CommRing.toCommSemiring
DFunLike.coe
AlgHom
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.aeval
StandardEtalePair.Ring
P
StandardEtalePair.instCommRingRing
StandardEtalePair.instAlgebraRing
StandardEtalePair.lift
x
hasMap
HasQuotient.Quotient
Ideal
Ideal.instHasQuotient_1
MvPolynomial.instCommRingMvPolynomial
Ideal.span
Set
Set.instInsert
AlgEquiv
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
AlgEquiv.instFunLike
Polynomial.Bivariate.equivMvPolynomial
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
StandardEtalePair.f
Set.instSingletonSet
Polynomial.instSub
Polynomial.ring
CommRing.toRing
Polynomial.instMul
Polynomial.X
StandardEtalePair.g
Polynomial.instOne
Ideal.Quotient.semiring
Ideal.instAlgebraQuotient
AlgEquiv.symm
StandardEtalePair.equivMvPolynomialQuotient
Ring.toSemiring
Ideal.instHasQuotient
Ideal.Quotient.ring
MvPolynomial.X
AlgHom.comp
AlgEquiv.toAlgHom
Ideal.Quotient.mkₐ
β€”β€”
toSubmersivePresentation_jacobian πŸ“–mathematicalβ€”Algebra.PreSubmersivePresentation.jacobian
Algebra.SubmersivePresentation.toPreSubmersivePresentation
Finite.of_fintype
Fin.fintype
toSubmersivePresentation
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
x
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Polynomial.module
Semiring.toModule
LinearMap.instFunLike
Polynomial.derivative
StandardEtalePair.f
P
StandardEtalePair.g
β€”Finite.of_fintype
Algebra.PreSubmersivePresentation.jacobian_eq_jacobiMatrix_det
Matrix.det_fin_two
Algebra.PreSubmersivePresentation.jacobiMatrix_apply
RingHomInvPair.ids
toPresentation_relation
Polynomial.Bivariate.pderiv_zero_equivMvPolynomial
Derivation.mapCoeffs_C
hasMap
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
Matrix.cons_val_fin_one
map_sub
Derivation.instAddMonoidHomClass
Derivation.leibniz
MvPolynomial.pderiv_X
Pi.single_eq_same
mul_one
Polynomial.Bivariate.pderiv_one_equivMvPolynomial
Polynomial.derivative_C
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
MulZeroClass.mul_zero
add_zero
Derivation.map_one_eq_zero
sub_zero
Pi.single_eq_of_ne
Fin.instNeZeroHAddNatOfNat_mathlib_1
zero_add
Algebra.Generators.algebraMap_apply
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
aeval_val_equivMvPolynomial
toSubmersivePresentation_map πŸ“–mathematicalβ€”Algebra.PreSubmersivePresentation.map
Algebra.SubmersivePresentation.toPreSubmersivePresentation
Finite.of_fintype
Fin.fintype
toSubmersivePresentation
β€”Finite.of_fintype
toSubmersivePresentation_toPreSubmersivePresentation_toPresentation πŸ“–mathematicalβ€”Algebra.PreSubmersivePresentation.toPresentation
Algebra.SubmersivePresentation.toPreSubmersivePresentation
Finite.of_fintype
Fin.fintype
toSubmersivePresentation
toPresentation
β€”Finite.of_fintype

(root)

Definitions

NameCategoryTheorems
StandardEtalePair πŸ“–CompDataβ€”
StandardEtalePresentation πŸ“–CompData
1 mathmath: Algebra.IsStandardEtale.nonempty_standardEtalePresentation

---

← Back to Index