Documentation

Mathlib.RingTheory.Etale.StandardEtale

Standard etale maps #

Main definitions #

structure StandardEtalePair (R : Type u_1) [CommRing R] :
Type u_1

A StandardEtalePair R is a pair f g : R[X] such that f is monic, and f' is invertible in R[X][1/g]/f.

Instances For

    The standard etale algebra R[X][Y]/⟨f, Yg-1⟩ associated to a StandardEtalePair R. Also see equivPolynomialQuotient : P.Ring ≃ R[X][Y]/⟨f, Yg-1⟩ equivAwayAdjoinRoot : P.Ring ≃ (R[X]/f)[1/g] equivAwayQuotient : P.Ring ≃ R[X][1/g]/f equivMvPolynomialQuotient : P.Ring ≃ R[X, Y]/⟨f, Yg-1⟩

    Equations
      Instances For

        The X in the standard etale algebra R[X][Y]/⟨f, Yg-1⟩.

        Equations
          Instances For
            def StandardEtalePair.HasMap {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (P : StandardEtalePair R) (x : S) :

            There is a map from a standard etale algebra R[X][Y]/⟨f, Yg-1⟩ to S sending X to x iff f(x) = 0 and g(x) is invertible. Also see StandardEtalePair.homEquiv.

            Equations
              Instances For
                def StandardEtalePair.lift {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (P : StandardEtalePair R) (x : S) (h : P.HasMap x) :

                The map R[X][Y]/⟨f, Yg-1⟩ →ₐ[R] S sending X to x, given P.HasMap x.

                Equations
                  Instances For
                    @[simp]
                    theorem StandardEtalePair.lift_X {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (P : StandardEtalePair R) (x : S) (h : P.HasMap x) :
                    (P.lift x h) P.X = x
                    theorem StandardEtalePair.HasMap.map {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] {P : StandardEtalePair R} {x : S} (h : P.HasMap x) (f : S →ₐ[R] T) :
                    P.HasMap (f x)
                    theorem StandardEtalePair.hom_ext {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {P : StandardEtalePair R} {f g : P.Ring →ₐ[R] S} (H : f P.X = g P.X) :
                    f = g
                    theorem StandardEtalePair.hom_ext_iff {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {P : StandardEtalePair R} {f g : P.Ring →ₐ[R] S} :
                    f = g f P.X = g P.X
                    def StandardEtalePair.homEquiv {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (P : StandardEtalePair R) :
                    (P.Ring →ₐ[R] S) { x : S // P.HasMap x }

                    Maps out of R[X][Y]/⟨f, Yg-1⟩ corresponds bijectively with x such that f(x) = 0 and g(x) is invertible.

                    Equations
                      Instances For
                        @[simp]
                        theorem StandardEtalePair.homEquiv_symm_apply {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (P : StandardEtalePair R) (x : { x : S // P.HasMap x }) :
                        P.homEquiv.symm x = P.lift x
                        @[simp]
                        theorem StandardEtalePair.homEquiv_apply_coe {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (P : StandardEtalePair R) (f : P.Ring →ₐ[R] S) :
                        (P.homEquiv f) = f P.X
                        theorem StandardEtalePair.existsUnique_hasMap_of_hasMap_quotient_of_sq_eq_bot {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (P : StandardEtalePair R) (I : Ideal S) (hI : I ^ 2 = ) (x : S) (hx : P.HasMap ((Ideal.Quotient.mk I) x)) :
                        ∃! ε : S, ε I P.HasMap (x + ε)

                        An AlgEquiv between P.Ring and R[X][Y]/⟨f, Yg-1⟩, to not abuse the defeq between the two.

                        Equations
                          Instances For

                            R[X][Y]/⟨f, Yg-1⟩ ≃ (R[X]/f)[1/g]

                            Equations
                              Instances For

                                R[X][Y]/⟨f, Yg-1⟩ ≃ R[X][1/g]/f

                                Equations
                                  Instances For
                                    noncomputable def StandardEtalePair.map {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (P : StandardEtalePair R) (f : R →+* S) :

                                    Mapping a standard etale pair under a ring homomorphism.

                                    Equations
                                      Instances For
                                        @[simp]
                                        theorem StandardEtalePair.map_g {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (P : StandardEtalePair R) (f : R →+* S) :
                                        (P.map f).g = Polynomial.map f P.g
                                        @[simp]
                                        theorem StandardEtalePair.map_f {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (P : StandardEtalePair R) (f : R →+* S) :
                                        (P.map f).f = Polynomial.map f P.f
                                        theorem StandardEtalePair.HasMap.map_algebraMap {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] (P : StandardEtalePair R) [Algebra S T] [IsScalarTower R S T] {x : T} (H : P.HasMap x) :
                                        (P.map (algebraMap R S)).HasMap x
                                        structure StandardEtalePresentation (R : Type u_4) (S : Type u_5) [CommRing R] [CommRing S] [Algebra R S] extends StandardEtalePair R :
                                        Type (max u_4 u_5)

                                        An isomorphism to the standard etale algebra of a standard etale pair.

                                        Instances For

                                          The isomorphism to the standard etale algebra given a StandardEtalePresentation.

                                          Equations
                                            Instances For

                                              The Algebra.Presentation associated to a standard etale presentation.

                                              Equations
                                                Instances For

                                                  The Algebra.SubmersivePresentation associated to a standard etale presentation.

                                                  Equations
                                                    Instances For
                                                      def StandardEtalePresentation.mapEquiv {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] (P : StandardEtalePresentation R S) (e : S ≃ₐ[R] T) :

                                                      Mapping StandardEtalePresentation under AlgEquivs.

                                                      Equations
                                                        Instances For
                                                          theorem StandardEtalePresentation.hom_ext {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] (P : StandardEtalePresentation R S) {f₁ f₂ : S →ₐ[R] T} (h : f₁ P.x = f₂ P.x) :
                                                          f₁ = f₂
                                                          noncomputable def StandardEtalePresentation.baseChange {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] (P : StandardEtalePresentation R S) :

                                                          The base change of a standard etale algebra is standard etale.

                                                          Equations
                                                            Instances For
                                                              class Algebra.IsStandardEtale (R : Type u_4) (S : Type u_5) [CommRing R] [CommRing S] [Algebra R S] :

                                                              The class of standard etale algebras, defined to be the existence of a StandardEtalePresentation.

                                                              Instances
                                                                @[instance 100]
                                                                instance Algebra.instEtaleOfIsStandardEtale {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [IsStandardEtale R S] :
                                                                Etale R S
                                                                theorem Algebra.IsStandardEtale.of_equiv {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] (e : S ≃ₐ[R] T) [IsStandardEtale R S] :
                                                                theorem Algebra.IsStandardEtale.of_isLocalizationAway {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [IsStandardEtale R S] {Sₛ : Type u_4} [CommRing Sₛ] [Algebra S Sₛ] [Algebra R Sₛ] [IsScalarTower R S Sₛ] (s : S) [IsLocalization.Away s Sₛ] :
                                                                theorem Algebra.IsStandardEtale.of_surjective {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] [IsStandardEtale R S] [Etale R T] (f : S →ₐ[R] T) (hf : Function.Surjective f) :

                                                                If T is an etale algebra, and a standard etale algebra surjects onto T, then T is also standard etale.