Lex ๐ | CompOp | 415 mathmath: Prod.Lex.toLex_lt_toLex', HahnEmbedding.IsPartial.baseEmbedding_le, toLex_sub, instIsCancelAddLex, DFinsupp.lex_lt_iff_of_unique, toLex_mul, Sigma.Lex.denselyOrdered_of_noMaxOrder, Lex.forall, Sum.Lex.Icc_inr_inr, PSigma.Lex.denselyOrdered_of_noMinOrder, instIsOrderedCancelAddMonoidLexFinsupp, Pi.Lex.sSup_apply_le, WithBot.orderIsoPUnitSumLex_symm_inl, isLeftRegular_toLex, Lex.exists, OrderIso.sumLexIicIoi_symm_apply_of_lt, Lex.instVAddAssocClass', toLex_inj, HahnSeries.instIsStrictOrderedRingLexOfIsDomain, Prod.Lex.lt_iff', ofLex_symm_eq, HahnEmbedding.Partial.orderTop_eq_archimedeanClassMk, Prod.Lex.compare_def, Sum.Lex.Ico_inl_inl, Sum.Lex.Ico_inr_inr, MvPowerSeries.exists_finsupp_eq_lexOrder_of_ne_zero, pow_toLex, Sum.Lex.noMaxOrder, toLex_ofNat, Sum.Lex.Ioo_inl_inr, LinearOrderedCommGroupWithZero.inl_mul_inr_eq_coe_toLex, ofLex_add, toEquiv_toLexMulEquiv, isRightRegular_ofLex, DFinsupp.toLex_monotone, toLex_eq_one, ofLex_ratCast, Lex.instIsScalarTower'', Pi.ofLex_apply, Sum.Lex.inr_le_inr_iff, MvPowerSeries.min_lexOrder_le, Pi.lex_le_iff_of_unique, Lex.instIsScalarTower, WithBot.orderIsoPUnitSumLex_symm_inr, Sum.Lex.Ioo_inr_inl, Pi.instNoMinOrderLexForallOfWellFoundedLTOfNonempty, OrderIso.sumLexIioIci_symm_apply_Ici, Finsupp.Lex.addLeftMono, Finsupp.Lex.single_strictAnti, Sum.Lex.Iic_inr, Sigma.Lex.le_def, ofLex_sub, NonemptyInterval.toLex_strictMono, OrderIso.sumLexAssoc_symm_apply_inr_inr, MvPolynomial.supDegree_esymmAlgHomMonomial, ofLex_intCast, Prod.Lex.monotone_fst_ofLex, isRegular_toLex, Sum.Lex.inr_strictMono, Prod.Lex.toLexOrderHom_coe, HahnEmbedding.Partial.archimedeanClassMk_eq_iff, Prod.Lex.toLex_le_toLex', HahnSeries.support_abs, OrderAddMonoidHom.addCommute_inlโ_inrโ, DFinsupp.Lex.isOrderedCancelAddMonoid, HahnEmbedding.Seed.baseEmbedding_strictMono, Prod.Lex.isOrderedAddMonoid, Sum.Lex.Ioo_inr_inr, OrderIso.sumLexCongr_trans, Sum.Lex.noMaxOrder_of_nonempty, DFinsupp.Lex.isOrderedAddMonoid, toLex_vadd', PSigma.Lex.noMaxOrder_of_nonempty, Tuple.monotone_proj, Sum.Lex.inl_bot, Prod.Lex.instDenselyOrderedLex, Lex.instVAddCommClass'', Prod.Lex.prodLexAssoc_symm_apply, OrderType.type_lex_prod, HahnEmbedding.Partial.toOrderAddMonoidHom_apply, MvPowerSeries.lexOrder_def_of_ne_zero, symm_ofLexAddEquiv, Pi.toLex_update_le_self_iff, symm_toLexLinearEquiv, Sum.Lex.toLex_lt_toLex, Pi.toLex_update_lt_self_iff, OrderIso.sumLexIicIoi_symm_apply_of_le, Pi.Lex.sInf_apply, Sigma.Lex.denselyOrdered_of_noMinOrder, instIsCancelMulLex, ofLex_vadd, Finsupp.Lex.isStrictOrder, MvPowerSeries.lexOrder_mul, DFinsupp.lex_lt_iff, HahnEmbedding.Partial.orderTop_eq_iff, ofLex_pow, Lex.instVAddCommClass', Sum.Lex.Icc_inl_inl, Function.Lex.wellFoundedLT, MvPowerSeries.le_lexOrder_iff, Pi.le_toLex_update_self_iff, WithTop.orderIsoSumLexPUnit_toLex, Sum.Lex.inl_mono, MvPolynomial.leadingCoeff_esymmAlgHomMonomial, Prod.Lex.sumLexProdLexDistrib_symm_apply, Sum.Lex.toLexRelIsoLE_coe, ofLex_eq_one, Prod.Lex.instOrientedOrdLex, HahnEmbedding.IsPartial.strictMono, Tuple.graphEquivโ_apply, WithTop.orderIsoSumLexPUnit_symm_inl, Sum.Lex.Ioi_inr, PSigma.Lex.noMinOrder, DFinsupp.Lex.le_iff_of_unique, HahnSeries.embDomainOrderEmbedding_apply, OrderIso.sumLexIioIci_symm_apply_Iio, Prod.Lex.le_iff, HahnEmbedding.IsPartial.truncLT_mem_range, toLex_ofLex, Sigma.Lex.noMaxOrder_of_nonempty, HahnSeries.order_abs, Sum.Lex.Ici_inl, PSigma.Lex.noMaxOrder, Sum.Lex.Ioc_inl_inl, coe_toLexLinearEquiv, toLex_add, Lex.instVAddCommClass, isAddLeftRegular_toLex, OrderMonoidHom.inrโ_apply, ofLex_neg, ofLex_natCast, Pi.lex_desc, Sum.Lex.toLex_le_toLex, toLex_pow, coe_ofLexMulEquiv, Finsupp.Lex.single_lt_iff, Sum.Lex.Icc_inr_inl, Prod.Lex.noMaxOrder_of_left, symm_toLexAddEquiv, Tuple.self_comp_sort, OrderMonoidHom.inlโ_mul_inrโ_eq_toLex, toLex_ratCast, Sum.Lex.Ioc_inl_inr, Prod.Lex.noMinOrder_of_left, Sum.Lex.Iio_inl, Sum.Lex.toLexRelIsoLE_symm_coe, OrderAddMonoidHom.fstโ_comp_inlโ, Sum.Lex.denselyOrdered_of_noMaxOrder, toLex_intCast, OrderIso.sumLexIicIoi_symm_apply_Iic, HahnSeries.archimedeanClassMk_eq_archimedeanClassMk_iff, Prod.Lex.sumLexProdLexDistrib_apply, instIsCancelMulZeroLex, isAddRightRegular_toLex, ofLex_toLex, Pi.lex_lt_iff_of_unique, LinearOrderedCommGroupWithZero.inl_eq_coe_inlโ, WithTop.orderIsoSumLexPUnit_top, PSigma.Lex.noMinOrder_of_nonempty, HahnSeries.leadingCoeff_pos_iff, Prod.Lex.uniqueProd_apply, toLex_zero, Sum.Lex.Ioc_inr_inl, OrderIso.sumLexCongr_apply, HahnEmbedding.Partial.eval_smul, MvPolynomial.supDegree_esymm, DFinsupp.Lex.addLeftStrictMono, Prod.Lex.toLex_lt_toLex, Sum.Lex.inr_inf, OrderIso.sumLexIicIoi_symm_apply_Ioi, DFinsupp.Lex.addRightStrictMono, Sum.Lex.Ioc_inr_inr, Prod.Lex.covBy_iff, HahnSeries.finiteArchimedeanClassOrderIsoLex_apply_snd, Finsupp.Lex.le_iff_of_unique, Finsupp.DegLex.lt_iff, Sigma.Lex.noMinOrder, MvPolynomial.leadingCoeff_toLex_C, MvPowerSeries.lexOrder_zero, Pi.Lex.wellFoundedLT, Sum.Lex.Ioi_inl, Finsupp.lex_lt_iff_of_unique, instIsRightCancelMulLex, Sum.Lex.denselyOrdered_of_noMinOrder, Sum.Lex.Ioo_inl_inl, MvPolynomial.monic_esymm, ofLex_one, instLawfulBEqLex, isAddRegular_toLex, Pi.Lex.le_sInf_apply, OrderIso.sumLexIicIoi_apply_inr, instIsLeftCancelMulLex, toLex_natCast, Sum.Lex.Iic_inl, HahnSeries.embDomainOrderAddMonoidHom_injective, Sum.Lex.inl_strictMono, toLex_symm_eq, MvPolynomial.supDegree_toLex_C, Lex.instVAddAssocClass'', isRightRegular_toLex, instNontrivialLex, Prod.Lex.noMinOrder_of_right, toLex_inv, OrderMonoidHom.inlโ_apply, Sum.Lex.Ici_inr, instNonemptyLex, Sigma.Lex.noMaxOrder, Lex.instSMulCommClass', DFinsupp.Lex.lt_iff_of_unique, OrderIso.sumLexAssoc_symm_apply_inr_inl, Sum.Lex.inl_lt_inl_iff, OrderIso.sumLexAssoc_apply_inl_inl, DFinsupp.Lex.wellFoundedLT_of_finite, Sum.Lex.Ico_inr_inl, toLex_vadd, HahnSeries.archimedeanClassOrderIsoWithTop_apply, OrderAddMonoidHom.inlโ_apply, OrderMonoidHom.fstโ_apply, DFinsupp.Lex.addRightMono, Tuple.graph.card, OrderIso.sumLexEmpty_apply_inl, OrderIso.sumLexIicIoi_apply_inl, Pi.Lex.isOrderedAddCancelMonoid, LinearOrderedCommGroupWithZero.inr_eq_coe_inrโ, Sum.Lex.lt_def, isAddRightRegular_ofLex, DFinsupp.Lex.isStrictOrder, Sum.Lex.Ico_inl_inr, Finsupp.Lex.addRightStrictMono, OrderIso.sumLexCongr_refl, Sigma.Lex.denselyOrdered, OrderMonoidHom.commute_inlโ_inrโ, ofLex_inj, ofLex_inv, Lex.instIsScalarTower', LinearOrderedCommGroupWithZero.fst_comp_inl, Sum.Lex.Iio_inr, symm_ofLexMulEquiv, instIsLeftCancelMulZeroLex, Sum.Lex.toLexRelIsoLT_coe, coe_ofLexAddEquiv, DFinsupp.lex_le_iff_of_unique, HahnSeries.leadingCoeff_nonneg_iff, Pi.toLex_apply, toEquiv_ofLexMulEquiv, OrderAddMonoidHom.inlโ_add_inrโ_eq_toLex, HahnEmbedding.Partial.orderTop_eq_finiteArchimedeanClassMk, HahnSeries.iterateEquiv_apply, Pi.Lex.lt_iff_of_unique, Pi.lt_toLex_update_self_iff, hahnEmbedding_isOrderedModule_rat, Finsupp.Lex.addLeftStrictMono, WithBot.orderIsoPUnitSumLex_toLex, instIsLeftCancelAddLex, Prod.Lex.noMaxOrder_of_right, Lex.instVAddAssocClass, Finset.intervalGapsWithin_snd_of_lt, Sigma.Lex.lt_def, ofLex_ofNat, instIsRightCancelMulZeroLex, Finset.intervalGapsWithin_succ_fst_of_lt, HahnEmbedding.Seed.truncLT_mem_range_baseEmbedding, HahnEmbedding.Partial.mem_domain, toLex_smul', Prod.Lex.toLex_mono, OrderIso.emptySumLex_apply_inr, Sum.Lex.inl_lt_inr, HahnSeries.embDomainOrderAddMonoidHom_apply, HahnEmbedding.Seed.mem_domain_baseEmbedding, MvPowerSeries.lexOrder_eq_top_iff_eq_zero, Finsupp.Lex.single_antitone, Finsupp.lex_le_iff_of_unique, OrderIso.sumLexDualAntidistrib_symm_inl, ofLex_smul', HahnSeries.archimedeanClassMk_le_archimedeanClassMk_iff, Pi.instDenselyOrderedLexForall, Finsupp.Lex.isOrderedCancelAddMonoid, LinearOrderedCommGroupWithZero.fst_apply, DFinsupp.Lex.addLeftMono, Finset.intervalGapsWithin_fst_of_lt_lt, pow_ofLex, ofLex_vadd', Tuple.eq_sort_iff', OrderIso.sumLexIioIci_symm_apply_of_ge, ofLex_smul, HahnSeries.lt_iff, HahnSeries.instIsOrderedAddMonoidLex, OrderIso.sumLexCongr_symm, Prod.Lex.toLex_covBy_toLex_iff, instNoZeroDivisorsLex, Prod.Lex.isOrderedCancelMonoid, PSigma.Lex.denselyOrdered, coe_toLexMulEquiv, Finsupp.lex_lt_iff, OrderAddMonoidHom.fstโ_apply, isAddRegular_ofLex, Pi.Lex.isOrderedCancelMonoid, Prod.Lex.toLex_strictMono, PSigma.Lex.denselyOrdered_of_noMaxOrder, NonemptyInterval.toLex_mono, Pi.instNoMaxOrderLexForallOfWellFoundedLTOfNonempty, MonomialOrder.lex_lt_iff, HahnSeries.finiteArchimedeanClassOrderIsoLex_apply_fst, HahnSeries.orderTop_abs, OrderIso.sumLexIioIci_apply_inl, Sum.Lex.inr_mono, WithTop.orderIsoSumLexPUnit_symm_inr, OrderMonoidHom.fstโ_comp_inlโ, HahnSeries.instIsOrderedRingLexOfNoZeroDivisors, OrderIso.sumLexAssoc_apply_inr, Prod.Lex.instWellFoundedLTLex, NonemptyInterval.toLex_lt_toLex, Sum.Lex.not_inr_le_inl, DFinsupp.Lex.wellFoundedLT, HVertexOperator.coeff_comp, ofLex_mul, Finsupp.DegLex.le_iff, Sum.Lex.le_def, Finsupp.Lex.wellFoundedLT, HahnEmbedding.Partial.eval_zero, Fintype.card_lex, HahnSeries.finiteArchimedeanClassOrderIso_apply, toEquiv_toLexAddEquiv, toLex_eq_zero, OrderType.type_lex_sum, MonomialOrder.lex_le_iff, Prod.Lex.instTransOrdLex, Prod.Lex.prodUnique_apply, isAddLeftRegular_ofLex, symm_toLexMulEquiv, toLex_div, MvPolynomial.IsSymmetric.antitone_supDegree, isLeftRegular_ofLex, Finsupp.Lex.addRightMono, Prod.Lex.isOrderedMonoid, Sum.Lex.inr_top, MvPolynomial.leadingCoeff_toLex, HahnSeries.leadingCoeff_neg_iff, Prod.Lex.toLex_le_toLex, MvPowerSeries.lexOrder_le_of_coeff_ne_zero, Sigma.Lex.noMinOrder_of_nonempty, Finsupp.toLex_monotone, Sum.Lex.toLexRelIsoLT_symm_coe, Sum.Lex.inl_inf, ofLex_div, Sum.Lex.toLex_strictMono, Prod.Lex.prodLexCongr_apply, Pi.Lex.sSup_apply, Sum.Lex.noMinOrder, Finsupp.Lex.lt_iff, HahnEmbedding.Partial.exists_domain_eq_top, Sum.Lex.inr_sup, Sum.Lex.inr_lt_inr_iff, LinearOrderedCommGroupWithZero.inl_apply, OrderIso.sumLexDualAntidistrib_symm_inr, LinearOrderedCommGroupWithZero.inr_apply, Finsupp.Lex.single_le_iff, OrderIso.sumLexDualAntidistrib_inr, OrderAddMonoidHom.inrโ_apply, isRegular_ofLex, instIsRightCancelAddLex, ofLex_eq_zero, MvPowerSeries.le_lexOrder_mul, Prod.Lex.lt_iff, Finsupp.DegLex.lt_def, Prod.Lex.prodLexAssoc_apply, Sum.Lex.Icc_inl_inr, HahnEmbedding.Partial.exists_isMax, instRightDistribClassLex, DFinsupp.Lex.total_le, Lex.instSMulCommClass'', OrderIso.sumLexDualAntidistrib_inl, Sum.Lex.noMinOrder_of_nonempty, toLex_smul, HVertexOperator.comp_apply, toLex_one, OrderIso.sumLexAssoc_symm_apply_inl, HahnSeries.leadingCoeff_nonpos_iff, coe_toLexAddEquiv, Pi.Lex.isStrictOrder, Finsupp.Lex.wellFoundedLT_of_finite, OrderIso.sumLexIioIci_apply_inr, HahnEmbedding.Seed.domain_baseEmbedding, OrderIso.sumLexIioIci_symm_apply_of_lt, Tuple.proj_equivโ', HahnSeries.iterateEquiv_symm_apply, OrderIso.sumLexAssoc_apply_inl_inr, instLeftDistribClassLex, Finsupp.Lex.lt_iff_of_unique, Sum.Lex.toLex_mono, Pi.toLex_strictMono, NonemptyInterval.toLex_le_toLex, Pi.Lex.noMaxOrder', ofLex_zero, toEquiv_ofLexAddEquiv, hahnEmbedding_isOrderedAddMonoid, Sum.Lex.inl_sup, DFinsupp.Lex.lt_iff, MvPowerSeries.lexOrder_mul_ge, toLex_neg, Sum.Lex.not_inr_lt_inl, HahnSeries.leadingCoeff_abs, instIsDomainLex, coe_ofLexLinearEquiv, WithBot.orderIsoPUnitSumLex_bot, Set.PartiallyWellOrderedOn.ProdLex_iff, Lex.instSMulCommClass, Prod.Lex.le_iff', hahnEmbedding_isOrderedModule, symm_ofLexLinearEquiv, Sum.Lex.inl_le_inr, Prod.Lex.isOrderedAddCancelMonoid, Sum.Lex.inl_le_inl_iff, Pi.toLex_monotone, HahnEmbedding.Partial.toOrderAddMonoidHom_injective
|