Documentation Verification Report

Lex

๐Ÿ“ Source: Mathlib/RingTheory/HahnSeries/Lex.lean

Statistics

MetricCount
DefinitionsarchimedeanClassOrderIsoWithTop, embDomainOrderAddMonoidHom, embDomainOrderEmbedding, finiteArchimedeanClassOrderHomInvLex, finiteArchimedeanClassOrderHomLex, finiteArchimedeanClassOrderIso, finiteArchimedeanClassOrderIsoLex, instLinearOrderLex, instPartialOrderLex, Lex, Lex
11
Theoremsabs_lt_abs_of_orderTop_ofLex, archimedeanClassMk_eq_archimedeanClassMk_iff, archimedeanClassMk_le_archimedeanClassMk_iff, archimedeanClassMk_le_archimedeanClassMk_iff_of_orderTop_ofLex, archimedeanClassOrderIsoWithTop_apply, embDomainOrderAddMonoidHom_apply, embDomainOrderAddMonoidHom_injective, embDomainOrderEmbedding_apply, finiteArchimedeanClassOrderIsoLex_apply_fst, finiteArchimedeanClassOrderIsoLex_apply_snd, finiteArchimedeanClassOrderIso_apply, instIsOrderedAddMonoidLex, instIsOrderedRingLexOfNoZeroDivisors, instIsStrictOrderedRingLexOfIsDomain, leadingCoeff_abs, leadingCoeff_neg_iff, leadingCoeff_nonneg_iff, leadingCoeff_nonpos_iff, leadingCoeff_pos_iff, lt_iff, orderTop_abs, order_abs, support_abs
23
Total34

HahnSeries

Definitions

NameCategoryTheorems
archimedeanClassOrderIsoWithTop ๐Ÿ“–CompOp
1 mathmath: archimedeanClassOrderIsoWithTop_apply
embDomainOrderAddMonoidHom ๐Ÿ“–CompOp
2 mathmath: embDomainOrderAddMonoidHom_injective, embDomainOrderAddMonoidHom_apply
embDomainOrderEmbedding ๐Ÿ“–CompOp
2 mathmath: embDomainOrderEmbedding_apply, embDomainOrderAddMonoidHom_apply
finiteArchimedeanClassOrderHomInvLex ๐Ÿ“–CompOpโ€”
finiteArchimedeanClassOrderHomLex ๐Ÿ“–CompOpโ€”
finiteArchimedeanClassOrderIso ๐Ÿ“–CompOp
1 mathmath: finiteArchimedeanClassOrderIso_apply
finiteArchimedeanClassOrderIsoLex ๐Ÿ“–CompOp
2 mathmath: finiteArchimedeanClassOrderIsoLex_apply_snd, finiteArchimedeanClassOrderIsoLex_apply_fst
instLinearOrderLex ๐Ÿ“–CompOp
13 mathmath: HahnEmbedding.Partial.archimedeanClassMk_eq_iff, support_abs, abs_lt_abs_of_orderTop_ofLex, order_abs, archimedeanClassMk_eq_archimedeanClassMk_iff, finiteArchimedeanClassOrderIsoLex_apply_snd, archimedeanClassOrderIsoWithTop_apply, archimedeanClassMk_le_archimedeanClassMk_iff_of_orderTop_ofLex, archimedeanClassMk_le_archimedeanClassMk_iff, finiteArchimedeanClassOrderIsoLex_apply_fst, orderTop_abs, finiteArchimedeanClassOrderIso_apply, leadingCoeff_abs
instPartialOrderLex ๐Ÿ“–CompOp
23 mathmath: HahnEmbedding.Seed.baseEmbedding_pos, instIsStrictOrderedRingLexOfIsDomain, HahnEmbedding.Seed.baseEmbedding_strictMono, abs_lt_abs_of_orderTop_ofLex, HahnEmbedding.Partial.toOrderAddMonoidHom_apply, HahnEmbedding.Partial.extendFun_strictMono, HahnEmbedding.IsPartial.strictMono, embDomainOrderEmbedding_apply, leadingCoeff_pos_iff, embDomainOrderAddMonoidHom_injective, leadingCoeff_nonneg_iff, hahnEmbedding_isOrderedModule_rat, embDomainOrderAddMonoidHom_apply, HahnEmbedding.Partial.eval_lt, lt_iff, instIsOrderedAddMonoidLex, instIsOrderedRingLexOfNoZeroDivisors, HahnEmbedding.Partial.sSupFun_strictMono, leadingCoeff_neg_iff, leadingCoeff_nonpos_iff, hahnEmbedding_isOrderedAddMonoid, hahnEmbedding_isOrderedModule, HahnEmbedding.Partial.toOrderAddMonoidHom_injective

Theorems

NameKindAssumesProvesValidatesDepends On
abs_lt_abs_of_orderTop_ofLex ๐Ÿ“–mathematicalWithTop
Preorder.toLT
WithTop.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
orderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
DFunLike.coe
Equiv
Lex
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
instPartialOrderLex
abs
instLinearOrderLex
instAddGroupLex
instAddGroup
AddCommGroup.toAddGroup
โ€”lt_iff
LT.lt.ne_top
orderTop_abs
coeff_eq_zero_of_lt_orderTop
LT.lt.trans'
WithTop.coe_untop
coeff_untop_eq_leadingCoeff
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoidLex
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
covariant_swap_add_of_covariant_add
archimedeanClassMk_eq_archimedeanClassMk_iff ๐Ÿ“–mathematicalโ€”Lex
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
instAddCommGroup
instLinearOrderLex
instIsOrderedAddMonoidLex
AddCommGroup.toAddCommMonoid
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddLeftCancelSemigroup.toIsLeftCancelAdd
AddLeftCancelMonoid.toAddLeftCancelSemigroup
AddCancelCommMonoid.toAddLeftCancelMonoid
AddCommGroup.toAddCancelCommMonoid
IsOrderedAddMonoid.toAddLeftMono
orderTop
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
leadingCoeff
โ€”instIsOrderedAddMonoidLex
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
le_antisymm_iff
archimedeanClassMk_le_archimedeanClassMk_iff
instIsEmptyFalse
le_antisymm
Eq.le
Eq.ge
archimedeanClassMk_le_archimedeanClassMk_iff ๐Ÿ“–mathematicalโ€”ArchimedeanClass
Lex
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
instAddCommGroup
instLinearOrderLex
instIsOrderedAddMonoidLex
AddCommGroup.toAddCommMonoid
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddLeftCancelSemigroup.toIsLeftCancelAdd
AddLeftCancelMonoid.toAddLeftCancelSemigroup
AddCancelCommMonoid.toAddLeftCancelMonoid
AddCommGroup.toAddCancelCommMonoid
IsOrderedAddMonoid.toAddLeftMono
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instLinearOrder
WithTop
Preorder.toLT
WithTop.instPreorder
orderTop
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
leadingCoeff
โ€”instIsOrderedAddMonoidLex
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
lt_trichotomy
one_smul
LT.lt.le
abs_lt_abs_of_orderTop_ofLex
archimedeanClassMk_le_archimedeanClassMk_iff_of_orderTop_ofLex
Mathlib.Tactic.Contrapose.contraposeโ‚
Mathlib.Tactic.Push.not_and_eq
abs_nsmul
lt_of_lt_of_le
orderTop_smul_not_lt
LT.lt.not_gt
LT.lt.ne'
instIsEmptyFalse
archimedeanClassMk_le_archimedeanClassMk_iff_of_orderTop_ofLex ๐Ÿ“–mathematicalorderTop
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
DFunLike.coe
Equiv
Lex
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
ArchimedeanClass
instAddCommGroupLex
instAddCommGroup
instLinearOrderLex
instIsOrderedAddMonoidLex
AddCommGroup.toAddCommMonoid
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddLeftCancelSemigroup.toIsLeftCancelAdd
AddLeftCancelMonoid.toAddLeftCancelSemigroup
AddCancelCommMonoid.toAddLeftCancelMonoid
AddCommGroup.toAddCancelCommMonoid
IsOrderedAddMonoid.toAddLeftMono
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instLinearOrder
leadingCoeff
โ€”instIsOrderedAddMonoidLex
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
eq_or_ne
abs_zero
orderTop_zero
nsmul_zero
leadingCoeff_zero
orderTop_ne_top
orderTop_abs
lt_of_le_of_lt
nsmul_lt_nsmul_left
instIsLeftCancelAddLex
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
Nat.instZeroLEOneClass
lt_iff
covariant_swap_add_of_covariant_add
leadingCoeff_of_ne_zero
WithTop.untop.congr_simp
lt_trichotomy
coeff_eq_zero_of_lt_orderTop
WithTop.untop_eq_iff
LT.lt.le
Eq.le
WithTop.untop_lt_iff
ofLex_smul
coeff_smul
abs_pos
leadingCoeff_ne_zero
archimedeanClassOrderIsoWithTop_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
OrderIso
ArchimedeanClass
Lex
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
instAddCommGroup
instLinearOrderLex
instIsOrderedAddMonoidLex
AddCommGroup.toAddCommMonoid
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddLeftCancelSemigroup.toIsLeftCancelAdd
AddLeftCancelMonoid.toAddLeftCancelSemigroup
AddCancelCommMonoid.toAddLeftCancelMonoid
AddCommGroup.toAddCancelCommMonoid
IsOrderedAddMonoid.toAddLeftMono
WithTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instLinearOrder
WithTop.instPreorder
instFunLikeOrderIso
archimedeanClassOrderIsoWithTop
orderTop
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
โ€”instIsOrderedAddMonoidLex
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
eq_or_ne
TopHomClass.map_top
InfTopHomClass.toTopHomClass
OrderIsoClass.toInfTopHomClass
OrderIso.instOrderIsoClass
orderTop_zero
FiniteArchimedeanClass.withTopOrderIso_symm_apply
finiteArchimedeanClassOrderIso_apply
embDomainOrderAddMonoidHom_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
OrderAddMonoidHom
Lex
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
PartialOrder.toPreorder
instPartialOrderLex
instAddZeroClassLex
instAddMonoid
OrderAddMonoidHom.instFunLike
embDomainOrderAddMonoidHom
OrderHom.toFun
OrderEmbedding.toOrderHom
embDomainOrderEmbedding
โ€”โ€”
embDomainOrderAddMonoidHom_injective ๐Ÿ“–mathematicalโ€”Lex
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
OrderAddMonoidHom
PartialOrder.toPreorder
instPartialOrderLex
instAddZeroClassLex
instAddMonoid
OrderAddMonoidHom.instFunLike
embDomainOrderAddMonoidHom
โ€”RelEmbedding.injective
embDomainOrderEmbedding_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RelEmbedding
Lex
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderLex
RelEmbedding.instFunLike
embDomainOrderEmbedding
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
embDomain
ofLex
โ€”โ€”
finiteArchimedeanClassOrderIsoLex_apply_fst ๐Ÿ“–mathematicalโ€”WithTop.some
FiniteArchimedeanClass
DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
OrderIso
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
instAddCommGroup
instLinearOrderLex
instIsOrderedAddMonoidLex
AddCommGroup.toAddCommMonoid
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddLeftCancelSemigroup.toIsLeftCancelAdd
AddLeftCancelMonoid.toAddLeftCancelSemigroup
AddCancelCommMonoid.toAddLeftCancelMonoid
AddCommGroup.toAddCancelCommMonoid
IsOrderedAddMonoid.toAddLeftMono
ArchimedeanClass
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
ArchimedeanClass.instOrderTop
Prod.Lex.instLE
Preorder.toLT
instFunLikeOrderIso
finiteArchimedeanClassOrderIsoLex
orderTop
โ€”instIsOrderedAddMonoidLex
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
WithTop.coe_untop
finiteArchimedeanClassOrderIsoLex_apply_snd ๐Ÿ“–mathematicalโ€”ArchimedeanClass
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
ArchimedeanClass.instOrderTop
FiniteArchimedeanClass
DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
OrderIso
HahnSeries
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
instAddCommGroup
instLinearOrderLex
instIsOrderedAddMonoidLex
AddCommGroup.toAddCommMonoid
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddLeftCancelSemigroup.toIsLeftCancelAdd
AddLeftCancelMonoid.toAddLeftCancelSemigroup
AddCancelCommMonoid.toAddLeftCancelMonoid
AddCommGroup.toAddCancelCommMonoid
IsOrderedAddMonoid.toAddLeftMono
Prod.Lex.instLE
Preorder.toLT
instFunLikeOrderIso
finiteArchimedeanClassOrderIsoLex
leadingCoeff
โ€”instIsOrderedAddMonoidLex
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
finiteArchimedeanClassOrderIso_apply ๐Ÿ“–mathematicalโ€”WithTop.some
DFunLike.coe
OrderIso
FiniteArchimedeanClass
Lex
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
instAddCommGroup
instLinearOrderLex
instIsOrderedAddMonoidLex
AddCommGroup.toAddCommMonoid
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddLeftCancelSemigroup.toIsLeftCancelAdd
AddLeftCancelMonoid.toAddLeftCancelSemigroup
AddCancelCommMonoid.toAddLeftCancelMonoid
AddCommGroup.toAddCancelCommMonoid
IsOrderedAddMonoid.toAddLeftMono
ArchimedeanClass
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
ArchimedeanClass.instOrderTop
instFunLikeOrderIso
finiteArchimedeanClassOrderIso
orderTop
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
โ€”instIsOrderedAddMonoidLex
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
finiteArchimedeanClassOrderIsoLex_apply_fst
instIsOrderedAddMonoidLex ๐Ÿ“–mathematicalโ€”IsOrderedAddMonoid
Lex
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidLex
instAddCommMonoid
instPartialOrderLex
โ€”LE.le.eq_or_lt
le_of_lt
lt_iff
add_left_strictMono
covariant_swap_add_of_covariant_add
instIsOrderedRingLexOfNoZeroDivisors ๐Ÿ“–mathematicalโ€”IsOrderedRing
Lex
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
instSemiringLex
instSemiring
Ring.toSemiring
instPartialOrderLex
โ€”instIsOrderedAddMonoidLex
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
leadingCoeff_one
IsOrderedRing.toZeroLEOneClass
sub_nonneg
covariant_swap_add_of_covariant_add
mul_sub
leadingCoeff_nonneg_iff
ofLex_mul
leadingCoeff_mul
mul_nonneg
IsOrderedRing.toPosMulMono
sub_mul
instIsStrictOrderedRingLexOfIsDomain ๐Ÿ“–mathematicalโ€”IsStrictOrderedRing
Lex
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
instSemiringLex
instSemiring
Ring.toSemiring
instPartialOrderLex
โ€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
IsOrderedRing.toIsStrictOrderedRing
instIsOrderedRingLexOfNoZeroDivisors
IsStrictOrderedRing.toIsOrderedRing
IsDomain.to_noZeroDivisors
instIsDomainLex
instIsDomainOfIsCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
instNontrivialLex
instNontrivialOfNonempty
Zero.instNonempty
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toMulPosStrictMono
leadingCoeff_abs ๐Ÿ“–mathematicalโ€”leadingCoeff
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
DFunLike.coe
Equiv
Lex
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
abs
instLinearOrderLex
instAddGroupLex
instAddGroup
AddCommGroup.toAddGroup
โ€”lt_trichotomy
abs_eq_neg_self
instIsOrderedAddMonoidLex
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
LT.lt.le
leadingCoeff_neg_iff
ofLex_neg
leadingCoeff_neg
abs_zero
leadingCoeff_zero
abs_eq_self
leadingCoeff_pos_iff
leadingCoeff_neg_iff ๐Ÿ“–mathematicalโ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
leadingCoeff
DFunLike.coe
Equiv
Lex
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
instPartialOrderLex
instZeroLex
instZero
โ€”โ€”
leadingCoeff_nonneg_iff ๐Ÿ“–mathematicalโ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
leadingCoeff
DFunLike.coe
Equiv
Lex
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
instPartialOrderLex
instZeroLex
instZero
โ€”LE.le.eq_or_lt
le_of_eq
leadingCoeff_eq_zero
LT.lt.le
leadingCoeff_pos_iff
leadingCoeff_zero
leadingCoeff_nonpos_iff ๐Ÿ“–mathematicalโ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
leadingCoeff
DFunLike.coe
Equiv
Lex
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
instPartialOrderLex
instZeroLex
instZero
โ€”โ€”
leadingCoeff_pos_iff ๐Ÿ“–mathematicalโ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
leadingCoeff
DFunLike.coe
Equiv
Lex
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
instPartialOrderLex
instZeroLex
instZero
โ€”lt_iff
leadingCoeff_ne_zero
LT.lt.ne
orderTop_ne_top
coeff_eq_zero_of_lt_orderTop
WithTop.lt_untop_iff
coeff_untop_eq_leadingCoeff
orderTop_eq_of_le
Mathlib.Tactic.Contrapose.contraposeโ‚
WithTop.ne_top_iff_exists
WithTop.untop_eq_iff
leadingCoeff_of_ne_zero
lt_iff ๐Ÿ“–mathematicalโ€”Lex
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderLex
coeff
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
โ€”โ€”
orderTop_abs ๐Ÿ“–mathematicalโ€”orderTop
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
DFunLike.coe
Equiv
Lex
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
abs
instLinearOrderLex
instAddGroupLex
instAddGroup
AddCommGroup.toAddGroup
โ€”le_total
abs_eq_neg_self
instIsOrderedAddMonoidLex
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
ofLex_neg
orderTop_neg
abs_eq_self
order_abs ๐Ÿ“–mathematicalโ€”order
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
DFunLike.coe
Equiv
Lex
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
abs
instLinearOrderLex
instAddGroupLex
instAddGroup
AddCommGroup.toAddGroup
โ€”eq_or_ne
abs_zero
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoidLex
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
order_zero
covariant_swap_add_of_covariant_add
WithTop.coe_injective
order_eq_orderTop_of_ne_zero
orderTop_abs
support_abs ๐Ÿ“–mathematicalโ€”support
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
DFunLike.coe
Equiv
Lex
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
abs
instLinearOrderLex
instAddGroupLex
instAddGroup
AddCommGroup.toAddGroup
โ€”le_total
abs_eq_neg_self
instIsOrderedAddMonoidLex
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
support_neg
abs_eq_self

Pi

Definitions

NameCategoryTheorems
Lex ๐Ÿ“–MathDef
11 mathmath: lex_eq_dfinsupp_lex, isTrichotomous_lex, DFinsupp.lex_lt_of_lt, lex_iff_of_unique, Finsupp.lex_lt_of_lt, Fin.pi_lex_lt_cons_cons, lex_lt_of_lt, List.Nat.antidiagonalTuple_pairwise_pi_lex, trichotomous_lex, lex_eq_finsupp_lex, Lex.wellFounded

(root)

Definitions

NameCategoryTheorems
Lex ๐Ÿ“–CompOp
415 mathmath: Prod.Lex.toLex_lt_toLex', HahnEmbedding.IsPartial.baseEmbedding_le, toLex_sub, instIsCancelAddLex, DFinsupp.lex_lt_iff_of_unique, toLex_mul, Sigma.Lex.denselyOrdered_of_noMaxOrder, Lex.forall, Sum.Lex.Icc_inr_inr, PSigma.Lex.denselyOrdered_of_noMinOrder, instIsOrderedCancelAddMonoidLexFinsupp, Pi.Lex.sSup_apply_le, WithBot.orderIsoPUnitSumLex_symm_inl, isLeftRegular_toLex, Lex.exists, OrderIso.sumLexIicIoi_symm_apply_of_lt, Lex.instVAddAssocClass', toLex_inj, HahnSeries.instIsStrictOrderedRingLexOfIsDomain, Prod.Lex.lt_iff', ofLex_symm_eq, HahnEmbedding.Partial.orderTop_eq_archimedeanClassMk, Prod.Lex.compare_def, Sum.Lex.Ico_inl_inl, Sum.Lex.Ico_inr_inr, MvPowerSeries.exists_finsupp_eq_lexOrder_of_ne_zero, pow_toLex, Sum.Lex.noMaxOrder, toLex_ofNat, Sum.Lex.Ioo_inl_inr, LinearOrderedCommGroupWithZero.inl_mul_inr_eq_coe_toLex, ofLex_add, toEquiv_toLexMulEquiv, isRightRegular_ofLex, DFinsupp.toLex_monotone, toLex_eq_one, ofLex_ratCast, Lex.instIsScalarTower'', Pi.ofLex_apply, Sum.Lex.inr_le_inr_iff, MvPowerSeries.min_lexOrder_le, Pi.lex_le_iff_of_unique, Lex.instIsScalarTower, WithBot.orderIsoPUnitSumLex_symm_inr, Sum.Lex.Ioo_inr_inl, Pi.instNoMinOrderLexForallOfWellFoundedLTOfNonempty, OrderIso.sumLexIioIci_symm_apply_Ici, Finsupp.Lex.addLeftMono, Finsupp.Lex.single_strictAnti, Sum.Lex.Iic_inr, Sigma.Lex.le_def, ofLex_sub, NonemptyInterval.toLex_strictMono, OrderIso.sumLexAssoc_symm_apply_inr_inr, MvPolynomial.supDegree_esymmAlgHomMonomial, ofLex_intCast, Prod.Lex.monotone_fst_ofLex, isRegular_toLex, Sum.Lex.inr_strictMono, Prod.Lex.toLexOrderHom_coe, HahnEmbedding.Partial.archimedeanClassMk_eq_iff, Prod.Lex.toLex_le_toLex', HahnSeries.support_abs, OrderAddMonoidHom.addCommute_inlโ‚—_inrโ‚—, DFinsupp.Lex.isOrderedCancelAddMonoid, HahnEmbedding.Seed.baseEmbedding_strictMono, Prod.Lex.isOrderedAddMonoid, Sum.Lex.Ioo_inr_inr, OrderIso.sumLexCongr_trans, Sum.Lex.noMaxOrder_of_nonempty, DFinsupp.Lex.isOrderedAddMonoid, toLex_vadd', PSigma.Lex.noMaxOrder_of_nonempty, Tuple.monotone_proj, Sum.Lex.inl_bot, Prod.Lex.instDenselyOrderedLex, Lex.instVAddCommClass'', Prod.Lex.prodLexAssoc_symm_apply, OrderType.type_lex_prod, HahnEmbedding.Partial.toOrderAddMonoidHom_apply, MvPowerSeries.lexOrder_def_of_ne_zero, symm_ofLexAddEquiv, Pi.toLex_update_le_self_iff, symm_toLexLinearEquiv, Sum.Lex.toLex_lt_toLex, Pi.toLex_update_lt_self_iff, OrderIso.sumLexIicIoi_symm_apply_of_le, Pi.Lex.sInf_apply, Sigma.Lex.denselyOrdered_of_noMinOrder, instIsCancelMulLex, ofLex_vadd, Finsupp.Lex.isStrictOrder, MvPowerSeries.lexOrder_mul, DFinsupp.lex_lt_iff, HahnEmbedding.Partial.orderTop_eq_iff, ofLex_pow, Lex.instVAddCommClass', Sum.Lex.Icc_inl_inl, Function.Lex.wellFoundedLT, MvPowerSeries.le_lexOrder_iff, Pi.le_toLex_update_self_iff, WithTop.orderIsoSumLexPUnit_toLex, Sum.Lex.inl_mono, MvPolynomial.leadingCoeff_esymmAlgHomMonomial, Prod.Lex.sumLexProdLexDistrib_symm_apply, Sum.Lex.toLexRelIsoLE_coe, ofLex_eq_one, Prod.Lex.instOrientedOrdLex, HahnEmbedding.IsPartial.strictMono, Tuple.graphEquivโ‚‚_apply, WithTop.orderIsoSumLexPUnit_symm_inl, Sum.Lex.Ioi_inr, PSigma.Lex.noMinOrder, DFinsupp.Lex.le_iff_of_unique, HahnSeries.embDomainOrderEmbedding_apply, OrderIso.sumLexIioIci_symm_apply_Iio, Prod.Lex.le_iff, HahnEmbedding.IsPartial.truncLT_mem_range, toLex_ofLex, Sigma.Lex.noMaxOrder_of_nonempty, HahnSeries.order_abs, Sum.Lex.Ici_inl, PSigma.Lex.noMaxOrder, Sum.Lex.Ioc_inl_inl, coe_toLexLinearEquiv, toLex_add, Lex.instVAddCommClass, isAddLeftRegular_toLex, OrderMonoidHom.inrโ‚—_apply, ofLex_neg, ofLex_natCast, Pi.lex_desc, Sum.Lex.toLex_le_toLex, toLex_pow, coe_ofLexMulEquiv, Finsupp.Lex.single_lt_iff, Sum.Lex.Icc_inr_inl, Prod.Lex.noMaxOrder_of_left, symm_toLexAddEquiv, Tuple.self_comp_sort, OrderMonoidHom.inlโ‚—_mul_inrโ‚—_eq_toLex, toLex_ratCast, Sum.Lex.Ioc_inl_inr, Prod.Lex.noMinOrder_of_left, Sum.Lex.Iio_inl, Sum.Lex.toLexRelIsoLE_symm_coe, OrderAddMonoidHom.fstโ‚—_comp_inlโ‚—, Sum.Lex.denselyOrdered_of_noMaxOrder, toLex_intCast, OrderIso.sumLexIicIoi_symm_apply_Iic, HahnSeries.archimedeanClassMk_eq_archimedeanClassMk_iff, Prod.Lex.sumLexProdLexDistrib_apply, instIsCancelMulZeroLex, isAddRightRegular_toLex, ofLex_toLex, Pi.lex_lt_iff_of_unique, LinearOrderedCommGroupWithZero.inl_eq_coe_inlโ‚—, WithTop.orderIsoSumLexPUnit_top, PSigma.Lex.noMinOrder_of_nonempty, HahnSeries.leadingCoeff_pos_iff, Prod.Lex.uniqueProd_apply, toLex_zero, Sum.Lex.Ioc_inr_inl, OrderIso.sumLexCongr_apply, HahnEmbedding.Partial.eval_smul, MvPolynomial.supDegree_esymm, DFinsupp.Lex.addLeftStrictMono, Prod.Lex.toLex_lt_toLex, Sum.Lex.inr_inf, OrderIso.sumLexIicIoi_symm_apply_Ioi, DFinsupp.Lex.addRightStrictMono, Sum.Lex.Ioc_inr_inr, Prod.Lex.covBy_iff, HahnSeries.finiteArchimedeanClassOrderIsoLex_apply_snd, Finsupp.Lex.le_iff_of_unique, Finsupp.DegLex.lt_iff, Sigma.Lex.noMinOrder, MvPolynomial.leadingCoeff_toLex_C, MvPowerSeries.lexOrder_zero, Pi.Lex.wellFoundedLT, Sum.Lex.Ioi_inl, Finsupp.lex_lt_iff_of_unique, instIsRightCancelMulLex, Sum.Lex.denselyOrdered_of_noMinOrder, Sum.Lex.Ioo_inl_inl, MvPolynomial.monic_esymm, ofLex_one, instLawfulBEqLex, isAddRegular_toLex, Pi.Lex.le_sInf_apply, OrderIso.sumLexIicIoi_apply_inr, instIsLeftCancelMulLex, toLex_natCast, Sum.Lex.Iic_inl, HahnSeries.embDomainOrderAddMonoidHom_injective, Sum.Lex.inl_strictMono, toLex_symm_eq, MvPolynomial.supDegree_toLex_C, Lex.instVAddAssocClass'', isRightRegular_toLex, instNontrivialLex, Prod.Lex.noMinOrder_of_right, toLex_inv, OrderMonoidHom.inlโ‚—_apply, Sum.Lex.Ici_inr, instNonemptyLex, Sigma.Lex.noMaxOrder, Lex.instSMulCommClass', DFinsupp.Lex.lt_iff_of_unique, OrderIso.sumLexAssoc_symm_apply_inr_inl, Sum.Lex.inl_lt_inl_iff, OrderIso.sumLexAssoc_apply_inl_inl, DFinsupp.Lex.wellFoundedLT_of_finite, Sum.Lex.Ico_inr_inl, toLex_vadd, HahnSeries.archimedeanClassOrderIsoWithTop_apply, OrderAddMonoidHom.inlโ‚—_apply, OrderMonoidHom.fstโ‚—_apply, DFinsupp.Lex.addRightMono, Tuple.graph.card, OrderIso.sumLexEmpty_apply_inl, OrderIso.sumLexIicIoi_apply_inl, Pi.Lex.isOrderedAddCancelMonoid, LinearOrderedCommGroupWithZero.inr_eq_coe_inrโ‚—, Sum.Lex.lt_def, isAddRightRegular_ofLex, DFinsupp.Lex.isStrictOrder, Sum.Lex.Ico_inl_inr, Finsupp.Lex.addRightStrictMono, OrderIso.sumLexCongr_refl, Sigma.Lex.denselyOrdered, OrderMonoidHom.commute_inlโ‚—_inrโ‚—, ofLex_inj, ofLex_inv, Lex.instIsScalarTower', LinearOrderedCommGroupWithZero.fst_comp_inl, Sum.Lex.Iio_inr, symm_ofLexMulEquiv, instIsLeftCancelMulZeroLex, Sum.Lex.toLexRelIsoLT_coe, coe_ofLexAddEquiv, DFinsupp.lex_le_iff_of_unique, HahnSeries.leadingCoeff_nonneg_iff, Pi.toLex_apply, toEquiv_ofLexMulEquiv, OrderAddMonoidHom.inlโ‚—_add_inrโ‚—_eq_toLex, HahnEmbedding.Partial.orderTop_eq_finiteArchimedeanClassMk, HahnSeries.iterateEquiv_apply, Pi.Lex.lt_iff_of_unique, Pi.lt_toLex_update_self_iff, hahnEmbedding_isOrderedModule_rat, Finsupp.Lex.addLeftStrictMono, WithBot.orderIsoPUnitSumLex_toLex, instIsLeftCancelAddLex, Prod.Lex.noMaxOrder_of_right, Lex.instVAddAssocClass, Finset.intervalGapsWithin_snd_of_lt, Sigma.Lex.lt_def, ofLex_ofNat, instIsRightCancelMulZeroLex, Finset.intervalGapsWithin_succ_fst_of_lt, HahnEmbedding.Seed.truncLT_mem_range_baseEmbedding, HahnEmbedding.Partial.mem_domain, toLex_smul', Prod.Lex.toLex_mono, OrderIso.emptySumLex_apply_inr, Sum.Lex.inl_lt_inr, HahnSeries.embDomainOrderAddMonoidHom_apply, HahnEmbedding.Seed.mem_domain_baseEmbedding, MvPowerSeries.lexOrder_eq_top_iff_eq_zero, Finsupp.Lex.single_antitone, Finsupp.lex_le_iff_of_unique, OrderIso.sumLexDualAntidistrib_symm_inl, ofLex_smul', HahnSeries.archimedeanClassMk_le_archimedeanClassMk_iff, Pi.instDenselyOrderedLexForall, Finsupp.Lex.isOrderedCancelAddMonoid, LinearOrderedCommGroupWithZero.fst_apply, DFinsupp.Lex.addLeftMono, Finset.intervalGapsWithin_fst_of_lt_lt, pow_ofLex, ofLex_vadd', Tuple.eq_sort_iff', OrderIso.sumLexIioIci_symm_apply_of_ge, ofLex_smul, HahnSeries.lt_iff, HahnSeries.instIsOrderedAddMonoidLex, OrderIso.sumLexCongr_symm, Prod.Lex.toLex_covBy_toLex_iff, instNoZeroDivisorsLex, Prod.Lex.isOrderedCancelMonoid, PSigma.Lex.denselyOrdered, coe_toLexMulEquiv, Finsupp.lex_lt_iff, OrderAddMonoidHom.fstโ‚—_apply, isAddRegular_ofLex, Pi.Lex.isOrderedCancelMonoid, Prod.Lex.toLex_strictMono, PSigma.Lex.denselyOrdered_of_noMaxOrder, NonemptyInterval.toLex_mono, Pi.instNoMaxOrderLexForallOfWellFoundedLTOfNonempty, MonomialOrder.lex_lt_iff, HahnSeries.finiteArchimedeanClassOrderIsoLex_apply_fst, HahnSeries.orderTop_abs, OrderIso.sumLexIioIci_apply_inl, Sum.Lex.inr_mono, WithTop.orderIsoSumLexPUnit_symm_inr, OrderMonoidHom.fstโ‚—_comp_inlโ‚—, HahnSeries.instIsOrderedRingLexOfNoZeroDivisors, OrderIso.sumLexAssoc_apply_inr, Prod.Lex.instWellFoundedLTLex, NonemptyInterval.toLex_lt_toLex, Sum.Lex.not_inr_le_inl, DFinsupp.Lex.wellFoundedLT, HVertexOperator.coeff_comp, ofLex_mul, Finsupp.DegLex.le_iff, Sum.Lex.le_def, Finsupp.Lex.wellFoundedLT, HahnEmbedding.Partial.eval_zero, Fintype.card_lex, HahnSeries.finiteArchimedeanClassOrderIso_apply, toEquiv_toLexAddEquiv, toLex_eq_zero, OrderType.type_lex_sum, MonomialOrder.lex_le_iff, Prod.Lex.instTransOrdLex, Prod.Lex.prodUnique_apply, isAddLeftRegular_ofLex, symm_toLexMulEquiv, toLex_div, MvPolynomial.IsSymmetric.antitone_supDegree, isLeftRegular_ofLex, Finsupp.Lex.addRightMono, Prod.Lex.isOrderedMonoid, Sum.Lex.inr_top, MvPolynomial.leadingCoeff_toLex, HahnSeries.leadingCoeff_neg_iff, Prod.Lex.toLex_le_toLex, MvPowerSeries.lexOrder_le_of_coeff_ne_zero, Sigma.Lex.noMinOrder_of_nonempty, Finsupp.toLex_monotone, Sum.Lex.toLexRelIsoLT_symm_coe, Sum.Lex.inl_inf, ofLex_div, Sum.Lex.toLex_strictMono, Prod.Lex.prodLexCongr_apply, Pi.Lex.sSup_apply, Sum.Lex.noMinOrder, Finsupp.Lex.lt_iff, HahnEmbedding.Partial.exists_domain_eq_top, Sum.Lex.inr_sup, Sum.Lex.inr_lt_inr_iff, LinearOrderedCommGroupWithZero.inl_apply, OrderIso.sumLexDualAntidistrib_symm_inr, LinearOrderedCommGroupWithZero.inr_apply, Finsupp.Lex.single_le_iff, OrderIso.sumLexDualAntidistrib_inr, OrderAddMonoidHom.inrโ‚—_apply, isRegular_ofLex, instIsRightCancelAddLex, ofLex_eq_zero, MvPowerSeries.le_lexOrder_mul, Prod.Lex.lt_iff, Finsupp.DegLex.lt_def, Prod.Lex.prodLexAssoc_apply, Sum.Lex.Icc_inl_inr, HahnEmbedding.Partial.exists_isMax, instRightDistribClassLex, DFinsupp.Lex.total_le, Lex.instSMulCommClass'', OrderIso.sumLexDualAntidistrib_inl, Sum.Lex.noMinOrder_of_nonempty, toLex_smul, HVertexOperator.comp_apply, toLex_one, OrderIso.sumLexAssoc_symm_apply_inl, HahnSeries.leadingCoeff_nonpos_iff, coe_toLexAddEquiv, Pi.Lex.isStrictOrder, Finsupp.Lex.wellFoundedLT_of_finite, OrderIso.sumLexIioIci_apply_inr, HahnEmbedding.Seed.domain_baseEmbedding, OrderIso.sumLexIioIci_symm_apply_of_lt, Tuple.proj_equivโ‚', HahnSeries.iterateEquiv_symm_apply, OrderIso.sumLexAssoc_apply_inl_inr, instLeftDistribClassLex, Finsupp.Lex.lt_iff_of_unique, Sum.Lex.toLex_mono, Pi.toLex_strictMono, NonemptyInterval.toLex_le_toLex, Pi.Lex.noMaxOrder', ofLex_zero, toEquiv_ofLexAddEquiv, hahnEmbedding_isOrderedAddMonoid, Sum.Lex.inl_sup, DFinsupp.Lex.lt_iff, MvPowerSeries.lexOrder_mul_ge, toLex_neg, Sum.Lex.not_inr_lt_inl, HahnSeries.leadingCoeff_abs, instIsDomainLex, coe_ofLexLinearEquiv, WithBot.orderIsoPUnitSumLex_bot, Set.PartiallyWellOrderedOn.ProdLex_iff, Lex.instSMulCommClass, Prod.Lex.le_iff', hahnEmbedding_isOrderedModule, symm_ofLexLinearEquiv, Sum.Lex.inl_le_inr, Prod.Lex.isOrderedAddCancelMonoid, Sum.Lex.inl_le_inl_iff, Pi.toLex_monotone, HahnEmbedding.Partial.toOrderAddMonoidHom_injective

---

โ† Back to Index