Documentation

Mathlib.RingTheory.HahnSeries.Lex

Lexicographical order on Hahn series #

In this file, we define lexicographical ordered Lex R⟦Γ⟧, and show this is a LinearOrder when Γ and R themselves are linearly ordered. Additionally, it is an ordered group or ring whenever R is.

Main definitions #

theorem HahnSeries.lt_iff {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [Zero R] [PartialOrder R] (a b : Lex (HahnSeries Γ R)) :
a < b ∃ (i : Γ), (∀ j < i, (ofLex a).coeff j = (ofLex b).coeff j) (ofLex a).coeff i < (ofLex b).coeff i
noncomputable instance HahnSeries.instLinearOrderLex {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [Zero R] [LinearOrder R] :
Equations
    @[simp]
    theorem HahnSeries.leadingCoeff_pos_iff {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [Zero R] [LinearOrder R] {x : Lex (HahnSeries Γ R)} :
    @[simp]
    theorem HahnSeries.leadingCoeff_nonneg_iff {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [Zero R] [LinearOrder R] {x : Lex (HahnSeries Γ R)} :
    @[simp]
    theorem HahnSeries.leadingCoeff_neg_iff {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [Zero R] [LinearOrder R] {x : Lex (HahnSeries Γ R)} :
    @[simp]
    theorem HahnSeries.leadingCoeff_nonpos_iff {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [Zero R] [LinearOrder R] {x : Lex (HahnSeries Γ R)} :

    Finite archimedean classes of Lex R⟦Γ⟧ decompose into lexicographical pairs of order and the finite archimedean class of leadingCoeff.

    Equations
      Instances For

        The correspondence between finite archimedean classes of Lex R⟦Γ⟧ and lexicographical pairs of HahnSeries.orderTop and the finite archimedean class of HahnSeries.leadingCoeff.

        Equations
          Instances For

            For Archimedean coefficients, there is a correspondence between finite archimedean classes and HahnSeries.orderTop without the top element.

            Equations
              Instances For

                For Archimedean coefficients, there is a correspondence between archimedean classes (with top) and HahnSeries.orderTop.

                Equations
                  Instances For
                    noncomputable def HahnSeries.embDomainOrderEmbedding {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [PartialOrder R] {Γ' : Type u_3} [LinearOrder Γ'] (f : Γ ↪o Γ') [Zero R] :

                    HahnSeries.embDomain as an OrderEmbedding.

                    Equations
                      Instances For
                        @[simp]
                        theorem HahnSeries.embDomainOrderEmbedding_apply {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [PartialOrder R] {Γ' : Type u_3} [LinearOrder Γ'] (f : Γ ↪o Γ') [Zero R] (a : Lex (HahnSeries Γ R)) :
                        noncomputable def HahnSeries.embDomainOrderAddMonoidHom {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [PartialOrder R] {Γ' : Type u_3} [LinearOrder Γ'] (f : Γ ↪o Γ') [AddMonoid R] :

                        HahnSeries.embDomain as an OrderAddMonoidHom.

                        Equations
                          Instances For
                            @[simp]
                            theorem HahnSeries.embDomainOrderAddMonoidHom_apply {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [PartialOrder R] {Γ' : Type u_3} [LinearOrder Γ'] (f : Γ ↪o Γ') [AddMonoid R] (a✝ : Lex (HahnSeries Γ R)) :