Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/Ideal/AssociatedPrime/Basic.lean

Statistics

MetricCount
DefinitionsIsAssociatedPrime, associatedPrimes
2
Theoremsmem_iff, annihilator_le, eq_radical, isPrime, map_of_injective, eq, isAssociatedPrime_iff, eq_empty_of_subsingleton, eq_singleton_of_isPrimary, nonempty, prod, subset_of_injective, subset_union_of_exact, biUnion_associatedPrimes_eq_compl_nonZeroDivisors, biUnion_associatedPrimes_eq_zero_divisors, exists_le_isAssociatedPrime_of_isNoetherianRing, isAssociatedPrime_iff_exists_injective_linearMap, not_isAssociatedPrime_of_subsingleton
18
Total20

AssociatePrimes

Theorems

NameKindAssumesProvesValidatesDepends On
mem_iff πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
Set
Set.instMembership
associatedPrimes
IsAssociatedPrime
β€”β€”

IsAssociatedPrime

Theorems

NameKindAssumesProvesValidatesDepends On
annihilator_le πŸ“–mathematicalIsAssociatedPrimeIdeal
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.annihilator
Top.top
Submodule
Submodule.instTop
β€”Submodule.bot_colon'
Submodule.annihilator_mono
le_top
eq_radical πŸ“–mathematicalIdeal.IsPrimary
CommRing.toCommSemiring
IsAssociatedPrime
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
Ideal.instHasQuotient_1
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
Submodule.Quotient.module
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
Ideal.radicalβ€”Ideal.IsPrime.ne_top'
Submodule.colon_singleton_zero
Ideal.instIsTwoSided_1
Ideal.Quotient.mkₐ_surjective
Submodule.mem_colon_singleton
Submodule.mem_bot
map_smul
SemilinearMapClass.toMulActionSemiHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
smul_eq_mul
mul_comm
Submodule.Quotient.mk_eq_zero
le_antisymm
Ideal.isPrimary_iff
Iff.not
Ideal.IsPrime.radical_le_iff
Ideal.mul_mem_left
isPrime πŸ“–mathematicalIsAssociatedPrimeIdeal.IsPrime
CommSemiring.toSemiring
β€”β€”
map_of_injective πŸ“–β€”IsAssociatedPrime
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
β€”β€”Ideal.ext
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
map_eq_zero_iff
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass

LinearEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
isAssociatedPrime_iff πŸ“–mathematicalβ€”IsAssociatedPrimeβ€”RingHomInvPair.ids
IsAssociatedPrime.map_of_injective
injective

LinearEquiv.AssociatedPrimes

Theorems

NameKindAssumesProvesValidatesDepends On
eq πŸ“–mathematicalβ€”associatedPrimesβ€”RingHomInvPair.ids
le_antisymm
associatedPrimes.subset_of_injective
LinearEquiv.injective

(root)

Definitions

NameCategoryTheorems
IsAssociatedPrime πŸ“–MathDef
5 mathmath: exists_le_isAssociatedPrime_of_isNoetherianRing, LinearEquiv.isAssociatedPrime_iff, AssociatePrimes.mem_iff, isAssociatedPrime_iff_exists_injective_linearMap, not_isAssociatedPrime_of_subsingleton
associatedPrimes πŸ“–CompOp
15 mathmath: biUnion_associatedPrimes_eq_compl_regular, Module.associatedPrimes.preimage_comap_associatedPrimes_eq_associatedPrimes_of_isLocalizedModule, Ideal.IsMaximal.mem_associatedPrimes_of_isFractionRing, associatedPrimes.finite, biUnion_associatedPrimes_eq_zero_divisors, associatedPrimes.nonempty, associatedPrimes.subset_of_injective, associatedPrimes.eq_singleton_of_isPrimary, associatedPrimes.eq_empty_of_subsingleton, AssociatePrimes.mem_iff, associatedPrimes.prod, LinearEquiv.AssociatedPrimes.eq, Module.associatedPrimes.minimalPrimes_annihilator_subset_associatedPrimes, biUnion_associatedPrimes_eq_compl_nonZeroDivisors, associatedPrimes.subset_union_of_exact

Theorems

NameKindAssumesProvesValidatesDepends On
biUnion_associatedPrimes_eq_compl_nonZeroDivisors πŸ“–mathematicalβ€”Set.iUnion
Ideal
CommSemiring.toSemiring
Set
Set.instMembership
associatedPrimes
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
SetLike.coe
Submodule.setLike
Compl.compl
Set.instCompl
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
Submonoid.instSetLike
nonZeroDivisors
β€”biUnion_associatedPrimes_eq_zero_divisors
Set.ext
biUnion_associatedPrimes_eq_zero_divisors πŸ“–mathematicalβ€”Set.iUnion
Ideal
CommSemiring.toSemiring
Set
Set.instMembership
associatedPrimes
SetLike.coe
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
setOf
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”subset_antisymm
Set.instAntisymmSubset
Set.iUnionβ‚‚_subset
Ideal.IsPrime.ne_top
exists_le_isAssociatedPrime_of_isNoetherianRing
Set.mem_biUnion
Submodule.mem_colon_singleton
exists_le_isAssociatedPrime_of_isNoetherianRing πŸ“–mathematicalβ€”IsAssociatedPrime
Ideal
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.colon
Bot.bot
Submodule
Submodule.instBot
Set
Set.instSingletonSet
β€”set_has_maximal_iff_noetherian
Eq.le
Submodule.mem_colon_singleton
Submodule.mem_bot
SMulCommClass.smul_comm
smulCommClass_self
smul_zero
LE.le.eq_of_not_lt
LE.le.trans
smul_smul
isAssociatedPrime_iff_exists_injective_linearMap πŸ“–mathematicalβ€”IsAssociatedPrime
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Ideal.IsPrime
CommSemiring.toSemiring
HasQuotient.Quotient
Ideal
Ideal.instHasQuotient_1
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
Submodule.Quotient.module
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
LinearMap.instFunLike
β€”IsAssociatedPrime.eq_1
Eq.le
LinearMap.ker_eq_bot
Submodule.ker_liftQ_eq_bot'
RingHomCompTriple.ids
Submodule.ker_mkQ
LinearMap.ker_comp_of_ker_eq_bot
LinearMap.ker_eq_bot_of_injective
Algebra.algebraMap_eq_smul_one
one_smul
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
not_isAssociatedPrime_of_subsingleton πŸ“–mathematicalβ€”IsAssociatedPrimeβ€”Ideal.IsPrime.ne_top
Set.instReflSubset

associatedPrimes

Theorems

NameKindAssumesProvesValidatesDepends On
eq_empty_of_subsingleton πŸ“–mathematicalβ€”associatedPrimes
Set
Ideal
CommSemiring.toSemiring
Set.instEmptyCollection
β€”Set.ext
not_isAssociatedPrime_of_subsingleton
eq_singleton_of_isPrimary πŸ“–mathematicalIdeal.IsPrimary
CommRing.toCommSemiring
associatedPrimes
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
Ideal.instHasQuotient_1
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
Submodule.Quotient.module
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
Set
Set.instSingletonSet
Ideal.radical
β€”Set.ext
Set.mem_singleton_iff
IsAssociatedPrime.eq_radical
nonempty
Ideal.instIsTwoSided_1
Ideal.Quotient.eq
sub_zero
Ideal.eq_top_iff_one
nonempty πŸ“–mathematicalβ€”Set.Nonempty
Ideal
CommSemiring.toSemiring
associatedPrimes
β€”exists_ne
exists_le_isAssociatedPrime_of_isNoetherianRing
prod πŸ“–mathematicalβ€”associatedPrimes
Prod.instAddCommMonoid
Prod.instModule
CommSemiring.toSemiring
Set
Ideal
Set.instUnion
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
subset_union_of_exact
LinearMap.inl_injective
Function.Exact.inl_snd
Set.union_subset_iff
subset_of_injective
LinearMap.inr_injective
subset_of_injective πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
Set
Ideal
Set.instHasSubset
associatedPrimes
β€”IsAssociatedPrime.map_of_injective
subset_union_of_exact πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
Function.Exact
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Set
Ideal
Set.instHasSubset
associatedPrimes
Set.instUnion
β€”le_antisymm
Submodule.mem_colon_singleton
Submodule.mem_bot
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SMulCommClass.smul_comm
smulCommClass_self
smul_zero
Mathlib.Tactic.Contrapose.contrapose₁
Submonoid.mul_mem
SemigroupAction.mul_smul
RingHomSurjective.ids
Function.Exact.linearMap_ker_eq
LinearMap.mem_ker
Mathlib.Tactic.Push.not_and_eq

---

← Back to Index