Documentation

Mathlib.RingTheory.Ideal.AssociatedPrime.Basic

Associated primes of a module #

We provide the definition and related lemmas about associated primes of modules.

Main definition #

Main results #

TODO #

Generalize this to a non-commutative setting once there are annihilator for non-commutative rings.

def IsAssociatedPrime {R : Type u_1} [CommSemiring R] (I : Ideal R) (M : Type u_2) [AddCommMonoid M] [Module R M] :

IsAssociatedPrime I M if the prime ideal I is the annihilator of some x : M.

Equations
    Instances For
      def associatedPrimes (R : Type u_1) [CommSemiring R] (M : Type u_2) [AddCommMonoid M] [Module R M] :

      The set of associated primes of a module.

      Equations
        Instances For
          theorem IsAssociatedPrime.map_of_injective {R : Type u_1} [CommSemiring R] {I : Ideal R} {M : Type u_2} [AddCommMonoid M] [Module R M] {M' : Type u_3} [AddCommMonoid M'] [Module R M'] (f : M โ†’โ‚—[R] M') (h : IsAssociatedPrime I M) (hf : Function.Injective โ‡‘f) :
          theorem associatedPrimes.subset_of_injective {R : Type u_1} [CommSemiring R] {M : Type u_2} [AddCommMonoid M] [Module R M] {M' : Type u_3} [AddCommMonoid M'] [Module R M'] {f : M โ†’โ‚—[R] M'} (hf : Function.Injective โ‡‘f) :

          If M โ†’ M' is injective, then the set of associated primes of M is contained in that of M'.

          theorem associatedPrimes.subset_union_of_exact {R : Type u_1} [CommSemiring R] {M : Type u_2} [AddCommMonoid M] [Module R M] {M' : Type u_3} [AddCommMonoid M'] [Module R M'] {f : M โ†’โ‚—[R] M'} {M'' : Type u_4} [AddCommMonoid M''] [Module R M''] {g : M' โ†’โ‚—[R] M''} (hf : Function.Injective โ‡‘f) (hfg : Function.Exact โ‡‘f โ‡‘g) :

          If 0 โ†’ M โ†’ M' โ†’ M'' is an exact sequence, then the set of associated primes of M' is contained in the union of those of M and M''.

          theorem associatedPrimes.prod (R : Type u_1) [CommSemiring R] (M : Type u_2) [AddCommMonoid M] [Module R M] (M' : Type u_3) [AddCommMonoid M'] [Module R M'] :

          The set of associated primes of the product of two modules is equal to the union of those of the two modules.

          theorem biUnion_associatedPrimes_eq_zero_divisors (R : Type u_1) [CommSemiring R] (M : Type u_2) [AddCommMonoid M] [Module R M] [IsNoetherianRing R] :
          โ‹ƒ p โˆˆ associatedPrimes R M, โ†‘p = {r : R | โˆƒ (x : M), x โ‰  0 โˆง r โ€ข x = 0}