Documentation Verification Report

Cotangent

πŸ“ Source: Mathlib/RingTheory/Ideal/Cotangent.lean

Statistics

MetricCount
DefinitionskerSquareLift, Cotangent, kerSquareLift, Cotangent, cotangentEquivIdeal, cotangentIdeal, cotangentToQuotientSquare, instAddCommGroupCotangent, instInhabitedCotangent, instIsNoetherianCotangentOfSubtypeMem, instIsScalarTowerCotangent, instModuleCotangentOfAlgebra, instModuleQuotientCotangent, mapCotangent, quotCotangent, toCotangent, CotangentSpace, instModuleResidueFieldCotangentSpace
18
TheoremskerSquareLift_mk, ker_kerSquareLift, smul_eq_zero_of_mem, comap_cotangentIdeal, cotangentEquivIdeal_apply, cotangentEquivIdeal_symm_apply, cotangentIdeal_square, cotangent_subsingleton_iff, instIsScalarTowerQuotientHPowKerRingHomAlgebraMapOfNat, isTorsionBySet_cotangent, mapCotangent_toCotangent, map_toCotangent_ker, mem_toCotangent_ker, mk_mem_cotangentIdeal, range_cotangentToQuotientSquare, toCotangent_apply, toCotangent_eq, toCotangent_eq_zero, toCotangent_range, toCotangent_surjective, toCotangent_to_quotient_square, to_quotient_square_comp_toCotangent, map_eq_top_iff, span_image_eq_top_iff, finrank_cotangentSpace_eq_zero, finrank_cotangentSpace_eq_zero_iff, finrank_cotangentSpace_le_one_iff, instFiniteDimensionalResidueFieldCotangentSpaceOfIsNoetherianRing, instIsScalarTowerResidueFieldCotangentSpace, subsingleton_cotangentSpace_iff
30
Total48

AlgHom

Definitions

NameCategoryTheorems
kerSquareLift πŸ“–CompOp
4 mathmath: KaehlerDifferential.End_equiv_aux, Algebra.FormallySmooth.iff_split_surjection, ker_kerSquareLift, kerSquareLift_mk

Theorems

NameKindAssumesProvesValidatesDepends On
kerSquareLift_mk πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
RingHom.ker
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.instRingHomClass
toRingHom
Ideal.Quotient.semiring
Ideal.instAlgebraQuotient
funLike
kerSquareLift
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
β€”RingHom.instRingHomClass
Ideal.instIsTwoSided_1
ker_kerSquareLift πŸ“–mathematicalβ€”RingHom.ker
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.instRingHomClass
toRingHom
Ideal.Quotient.semiring
Ideal.instAlgebraQuotient
kerSquareLift
Ideal.cotangentIdeal
β€”le_antisymm
RingHom.instRingHomClass
Ideal.instIsTwoSided_1
Ideal.Quotient.mk_surjective

Algebra.Extension

Definitions

NameCategoryTheorems
Cotangent πŸ“–CompOp
75 mathmath: Algebra.SubmersivePresentation.cotangentComplexAux_injective, Algebra.Presentation.differentials.comm₁₂_single, Cotangent.span_eq_top_of_span_eq_ker, Algebra.PreSubmersivePresentation.cotangentComplexAux_apply, H1Cotangent.equiv_apply, Cotangent.val_sub, formallySmooth_iff_split_injection, h1CotangentΞΉ_injective, Algebra.PreSubmersivePresentation.cotangentComplexAux_zero_iff, Algebra.Presentation.differentials.hom₁_single, Algebra.Generators.exists_presentation_of_basis_cotangent, lTensor_cotangentComplex_eq_cotangentComplexBaseChange, Algebra.Generators.liftBaseChange_injective_of_isLocalizationAway, Cotangent.val_mk, subsingleton_h1Cotangent, Algebra.Generators.exists_presentation_of_free_cotangent, H1Cotangent.val_zero, Algebra.FormallySmooth.iff_injective_lTensor_residueField, Cotangent.val_smul''', Cotangent.val_add, Cotangent.finite, instIsScalarTowerCotangent, Hom.sub_one_tmul, Algebra.SubmersivePresentation.sectionCotangent_eq_iff, Cotangent.mk_eq_zero_iff, Algebra.Presentation.differentials.surjective_hom₁, Algebra.Generators.Cotangent.surjective_map_ofComp, CotangentSpace.map_sub_map, Algebra.Generators.cotangentRestrict_bijective_of_isCompl, CotangentSpace.map_cotangentComplex, cotangentComplexBaseChange_eq_lTensor_cotangentComplex, Cotangent.val_smul', Cotangent.map_comp, Algebra.Generators.cotangentCompAwaySec_apply, Cotangent.map_id, Algebra.Generators.Cotangent.exact, contangentEquiv_tmul, Algebra.Generators.cMulXSubOneCotangent_eq, h1CotangentΞΉ_ext_iff, Cotangent.map_toInfinitesimal_bijective, H1Cotangent.val_add, H1Cotangent.val_smul, Algebra.Presentation.differentials.comm₁₂, Cotangent.mk_eq_mk_iff_sub_mem, Cotangent.mk_surjective, Algebra.SubmersivePresentation.basisCotangent_localizationAway_apply, Algebra.SubmersivePresentation.cotangentComplexAux_surjective, H1Cotangent.map_apply_coe, Cotangent.val_smul, tensorCotangentInvFun_smul_mk, h1CotangentΞΉ_apply, cotangentComplex_injective_iff, Algebra.Generators.cotangentRestrict_mk, Algebra.Generators.cotangentRestrict_bijective_of_basis_kaehlerDifferential, Cotangent.val_zero, Hom.sub_tmul, Cotangent.of_add, Algebra.SubmersivePresentation.sectionCotangent_comp, Algebra.SubmersivePresentation.sectionCotangent_zero_of_notMem_range, Algebra.SubmersivePresentation.free_cotangent, Algebra.SubmersivePresentation.cotangentComplex_injective, Algebra.instFreeCotangentToExtensionUnitLocalizationAway, Algebra.SubmersivePresentation.basisCotangent_apply, Cotangent.map_mk, exact_cotangentComplex_toKaehler, Algebra.Generators.basisCotangentAway_apply, Algebra.Generators.H1Cotangent.map_comp_cotangentComplex_baseChange, Algebra.Generators.H1Cotangent.equiv_apply, CotangentSpace.map_comp_cotangentComplex, Cotangent.ker_mk, Algebra.SubmersivePresentation.cotangentEquiv_apply, Cotangent.map_sub_map, Cotangent.of_zero, cotangentComplex_mk, Cotangent.val_smul''

Ideal

Definitions

NameCategoryTheorems
Cotangent πŸ“–CompOp
38 mathmath: toCotangent_to_quotient_square, KaehlerDifferential.kerCotangentToTensor_toCotangent, toCotangent_eq, Algebra.Extension.Cotangent.val_sub, range_cotangentToQuotientSquare, mem_toCotangent_ker, Algebra.Extension.Cotangent.smul_eq_zero_of_mem, Algebra.Extension.Cotangent.val_mk, toCotangent_range, isTorsionBySet_cotangent, Algebra.Extension.Cotangent.val_smul''', Algebra.Extension.Cotangent.val_add, KaehlerDifferential.D_apply, mapCotangent_toCotangent, Cotangent.smul_eq_zero_of_mem, Algebra.Extension.Cotangent.val_smul', toCotangent_apply, toCotangent_eq_zero, cotangentEquivIdeal_apply, KaehlerDifferential.exact_kerCotangentToTensor_mapBaseChange, KaehlerDifferential.D_tensorProductTo, Algebra.Extension.Cotangent.val_smul, Algebra.FormallySmooth.kerCotangentToTensor_injective_iff, IsLocalRing.CotangentSpace.map_eq_top_iff, IsLocalRing.CotangentSpace.span_image_eq_top_iff, Algebra.Extension.Cotangent.val_zero, Algebra.Extension.Cotangent.of_add, cotangentEquivIdeal_symm_apply, KaehlerDifferential.range_kerCotangentToTensor, Derivation.liftKaehlerDifferential_apply, KaehlerDifferential.DLinearMap_apply, map_toCotangent_ker, toCotangent_surjective, Algebra.FormallySmooth.iff_split_injection, Algebra.Extension.Cotangent.of_zero, to_quotient_square_comp_toCotangent, Algebra.Extension.Cotangent.val_smul'', cotangent_subsingleton_iff
cotangentEquivIdeal πŸ“–CompOp
2 mathmath: cotangentEquivIdeal_apply, cotangentEquivIdeal_symm_apply
cotangentIdeal πŸ“–CompOp
9 mathmath: comap_cotangentIdeal, range_cotangentToQuotientSquare, KaehlerDifferential.End_equiv_aux, mk_mem_cotangentIdeal, Algebra.Extension.ker_infinitesimal, cotangentEquivIdeal_apply, AlgHom.ker_kerSquareLift, cotangentEquivIdeal_symm_apply, cotangentIdeal_square
cotangentToQuotientSquare πŸ“–CompOp
4 mathmath: toCotangent_to_quotient_square, range_cotangentToQuotientSquare, cotangentEquivIdeal_apply, to_quotient_square_comp_toCotangent
instAddCommGroupCotangent πŸ“–CompOp
46 mathmath: toCotangent_to_quotient_square, KaehlerDifferential.kerCotangentToTensor_toCotangent, IsLocalRing.finrank_CotangentSpace_eq_one_iff, toCotangent_eq, Algebra.Extension.Cotangent.val_sub, IsLocalRing.finrank_cotangentSpace_eq_zero, range_cotangentToQuotientSquare, mem_toCotangent_ker, Algebra.Extension.Cotangent.smul_eq_zero_of_mem, Algebra.Extension.Cotangent.val_mk, toCotangent_range, isTorsionBySet_cotangent, Algebra.Extension.Cotangent.val_smul''', IsLocalRing.finrank_CotangentSpace_eq_one, IsLocalRing.finrank_cotangentSpace_eq_zero_iff, Algebra.Extension.Cotangent.val_add, KaehlerDifferential.D_apply, mapCotangent_toCotangent, IsLocalRing.instFiniteDimensionalResidueFieldCotangentSpaceOfIsNoetherianRing, Cotangent.smul_eq_zero_of_mem, Algebra.Extension.Cotangent.val_smul', tfae_of_isNoetherianRing_of_isLocalRing_of_isDomain, toCotangent_apply, toCotangent_eq_zero, IsLocalRing.finrank_cotangentSpace_le_one_iff, cotangentEquivIdeal_apply, KaehlerDifferential.exact_kerCotangentToTensor_mapBaseChange, IsLocalRing.instIsScalarTowerResidueFieldCotangentSpace, KaehlerDifferential.D_tensorProductTo, Algebra.Extension.Cotangent.val_smul, IsDiscreteValuationRing.TFAE, Algebra.FormallySmooth.kerCotangentToTensor_injective_iff, IsLocalRing.CotangentSpace.map_eq_top_iff, IsLocalRing.CotangentSpace.span_image_eq_top_iff, Algebra.Extension.Cotangent.val_zero, Algebra.Extension.Cotangent.of_add, cotangentEquivIdeal_symm_apply, KaehlerDifferential.range_kerCotangentToTensor, Derivation.liftKaehlerDifferential_apply, KaehlerDifferential.DLinearMap_apply, map_toCotangent_ker, toCotangent_surjective, Algebra.FormallySmooth.iff_split_injection, Algebra.Extension.Cotangent.of_zero, to_quotient_square_comp_toCotangent, Algebra.Extension.Cotangent.val_smul''
instInhabitedCotangent πŸ“–CompOpβ€”
instIsNoetherianCotangentOfSubtypeMem πŸ“–CompOpβ€”
instIsScalarTowerCotangent πŸ“–CompOpβ€”
instModuleCotangentOfAlgebra πŸ“–CompOp
33 mathmath: toCotangent_to_quotient_square, KaehlerDifferential.kerCotangentToTensor_toCotangent, toCotangent_eq, range_cotangentToQuotientSquare, mem_toCotangent_ker, Algebra.Extension.Cotangent.smul_eq_zero_of_mem, Algebra.Extension.Cotangent.val_mk, toCotangent_range, isTorsionBySet_cotangent, Algebra.Extension.Cotangent.val_smul''', KaehlerDifferential.D_apply, mapCotangent_toCotangent, Cotangent.smul_eq_zero_of_mem, Algebra.Extension.Cotangent.val_smul', toCotangent_apply, toCotangent_eq_zero, cotangentEquivIdeal_apply, KaehlerDifferential.exact_kerCotangentToTensor_mapBaseChange, IsLocalRing.instIsScalarTowerResidueFieldCotangentSpace, KaehlerDifferential.D_tensorProductTo, Algebra.Extension.Cotangent.val_smul, Algebra.FormallySmooth.kerCotangentToTensor_injective_iff, IsLocalRing.CotangentSpace.map_eq_top_iff, IsLocalRing.CotangentSpace.span_image_eq_top_iff, cotangentEquivIdeal_symm_apply, KaehlerDifferential.range_kerCotangentToTensor, Derivation.liftKaehlerDifferential_apply, KaehlerDifferential.DLinearMap_apply, map_toCotangent_ker, toCotangent_surjective, Algebra.FormallySmooth.iff_split_injection, to_quotient_square_comp_toCotangent, Algebra.Extension.Cotangent.val_smul''
instModuleQuotientCotangent πŸ“–CompOpβ€”
mapCotangent πŸ“–CompOp
1 mathmath: mapCotangent_toCotangent
quotCotangent πŸ“–CompOpβ€”
toCotangent πŸ“–CompOp
19 mathmath: toCotangent_to_quotient_square, KaehlerDifferential.kerCotangentToTensor_toCotangent, toCotangent_eq, mem_toCotangent_ker, Algebra.Extension.Cotangent.val_mk, toCotangent_range, KaehlerDifferential.D_apply, mapCotangent_toCotangent, toCotangent_apply, toCotangent_eq_zero, KaehlerDifferential.D_tensorProductTo, IsLocalRing.CotangentSpace.map_eq_top_iff, IsLocalRing.CotangentSpace.span_image_eq_top_iff, cotangentEquivIdeal_symm_apply, Derivation.liftKaehlerDifferential_apply, KaehlerDifferential.DLinearMap_apply, map_toCotangent_ker, toCotangent_surjective, to_quotient_square_comp_toCotangent

Theorems

NameKindAssumesProvesValidatesDepends On
comap_cotangentIdeal πŸ“–mathematicalβ€”comap
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
instHasQuotient_1
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
RingHom
Ring.toSemiring
CommRing.toRing
instHasQuotient
Semiring.toNonAssocSemiring
Quotient.ring
instIsTwoSided_1
Quotient.semiring
RingHom.instFunLike
RingHom.instRingHomClass
cotangentIdeal
β€”ext
instIsTwoSided_1
RingHom.instRingHomClass
mk_mem_cotangentIdeal
cotangentEquivIdeal_apply πŸ“–mathematicalβ€”HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
instHasQuotient_1
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Quotient.semiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
cotangentIdeal
DFunLike.coe
LinearEquiv
RingHom.id
RingHomInvPair.ids
Cotangent
AddCommGroup.toAddCommMonoid
instAddCommGroupCotangent
Submodule.addCommMonoid
instModuleCotangentOfAlgebra
Submodule.module'
Submodule.Quotient.instSMul
CommRing.toRing
Ring.toAddCommGroup
Submodule.Quotient.module
IsScalarTower.right
instAlgebraQuotient
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
cotangentEquivIdeal
LinearMap
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Quotient.commRing
LinearMap.instFunLike
cotangentToQuotientSquare
β€”RingHomInvPair.ids
IsScalarTower.right
cotangentEquivIdeal_symm_apply πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
DFunLike.coe
LinearEquiv
RingHom.id
RingHomInvPair.ids
HasQuotient.Quotient
instHasQuotient_1
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Quotient.semiring
cotangentIdeal
Cotangent
Submodule.addCommMonoid
AddCommGroup.toAddCommMonoid
instAddCommGroupCotangent
Submodule.module'
Submodule.Quotient.instSMul
CommRing.toRing
Ring.toAddCommGroup
Submodule.Quotient.module
IsScalarTower.right
instAlgebraQuotient
instModuleCotangentOfAlgebra
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearEquiv.symm
cotangentEquivIdeal
LinearMap
Ring.toSemiring
Submodule
Submodule.hasQuotient
Submodule.Quotient.addCommGroup
LinearMap.instFunLike
Submodule.mkQ
Submodule.mem_map_of_mem
RingHom.toSemilinearMap
instHasQuotient
Quotient.ring
Submodule.module
toCotangent
β€”RingHomInvPair.ids
IsScalarTower.right
instIsTwoSided_1
Submodule.mem_map_of_mem
LinearEquiv.symm_apply_eq
cotangentIdeal_square πŸ“–mathematicalβ€”Ideal
HasQuotient.Quotient
CommSemiring.toSemiring
CommRing.toCommSemiring
instHasQuotient_1
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Quotient.semiring
Quotient.commSemiring
cotangentIdeal
Bot.bot
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”eq_bot_iff
pow_two
smul_eq_mul
Submodule.smul_induction_on
IsScalarTower.right
Submodule.Quotient.eq
sub_zero
mul_mem_mul
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
Submodule.addSubmonoidClass
cotangent_subsingleton_iff πŸ“–mathematicalβ€”Cotangent
IsIdempotentElem
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.mul
Semiring.toModule
IsScalarTower.right
Algebra.id
β€”IsScalarTower.right
pow_two
le_antisymm
pow_le_self
two_ne_zero
toCotangent_eq_zero
Quotient.inductionOnβ‚‚'
toCotangent_eq
sub_mem
Subtype.prop
instIsScalarTowerQuotientHPowKerRingHomAlgebraMapOfNat πŸ“–mathematicalβ€”IsScalarTower
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
instHasQuotient_1
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
RingHom.ker
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.instRingHomClass
algebraMap
Submodule.Quotient.instSMul'
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
Algebra.toSMul
IsScalarTower.right
Quotient.commSemiring
Algebra.kerSquareLift
β€”IsScalarTower.of_algebraMap_eq'
RingHom.instRingHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp_algebraMap
isTorsionBySet_cotangent πŸ“–mathematicalβ€”Module.IsTorsionBySet
Cotangent
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupCotangent
instModuleCotangentOfAlgebra
Algebra.id
SetLike.coe
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”Cotangent.smul_eq_zero_of_mem
mapCotangent_toCotangent πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
comap
AlgHom
AlgHom.funLike
AlgHomClass.toRingHomClass
AlgHom.algHomClass
DFunLike.coe
LinearMap
RingHom.id
Cotangent
AddCommGroup.toAddCommMonoid
instAddCommGroupCotangent
instModuleCotangentOfAlgebra
LinearMap.instFunLike
mapCotangent
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
Algebra.id
toCotangent
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
map_toCotangent_ker πŸ“–mathematicalβ€”Submodule.map
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
RingHom.id
RingHomSurjective.ids
Submodule.subtype
LinearMap.ker
Ideal
Cotangent
AddCommGroup.toAddCommMonoid
instAddCommGroupCotangent
instModuleCotangentOfAlgebra
Algebra.id
toCotangent
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
β€”RingHomSurjective.ids
toCotangent.eq_1
Submodule.ker_mkQ
pow_two
IsScalarTower.left
Submodule.map_smul''
IsScalarTower.right
smul_eq_mul
Submodule.map_subtype_top
mem_toCotangent_ker πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule
Submodule.addCommMonoid
Submodule.module
LinearMap.ker
Cotangent
AddCommGroup.toAddCommMonoid
instAddCommGroupCotangent
instModuleCotangentOfAlgebra
Algebra.id
RingHom.id
toCotangent
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
β€”RingHomSurjective.ids
map_toCotangent_ker
mk_mem_cotangentIdeal πŸ“–mathematicalβ€”HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
instHasQuotient
CommSemiring.toSemiring
CommRing.toCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
instHasQuotient_1
Quotient.semiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
cotangentIdeal
DFunLike.coe
RingHom
Quotient.ring
instIsTwoSided_1
RingHom.instFunLike
β€”instIsTwoSided_1
sub_sub_cancel
sub_mem
Submodule.addSubgroupClass
pow_le_self
two_ne_zero
IsScalarTower.left
Quotient.mk_eq_mk_iff_sub_mem
range_cotangentToQuotientSquare πŸ“–mathematicalβ€”LinearMap.range
Cotangent
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
instHasQuotient_1
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
AddCommGroup.toAddCommMonoid
instAddCommGroupCotangent
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Quotient.commRing
instModuleCotangentOfAlgebra
Submodule.Quotient.module
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
cotangentToQuotientSquare
Submodule.restrictScalars
Quotient.semiring
NonAssocSemiring.toNonUnitalNonAssocSemiring
Submodule.Quotient.instSMul
IsScalarTower.right
instAlgebraQuotient
cotangentIdeal
β€”RingHomSurjective.ids
RingHomCompTriple.ids
IsScalarTower.right
LinearMap.range_comp
toCotangent_range
Submodule.map_top
to_quotient_square_comp_toCotangent
Submodule.range_subtype
Submodule.ext
toCotangent_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Cotangent
Submodule.addCommMonoid
AddCommGroup.toAddCommMonoid
instAddCommGroupCotangent
Submodule.module
instModuleCotangentOfAlgebra
Algebra.id
LinearMap.instFunLike
toCotangent
CommRing.toRing
Submodule.addCommGroup
Ring.toAddCommGroup
Submodule
Submodule.instSMul
Top.top
Submodule.instTop
β€”β€”
toCotangent_eq πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Cotangent
Submodule.addCommMonoid
AddCommGroup.toAddCommMonoid
instAddCommGroupCotangent
Submodule.module
instModuleCotangentOfAlgebra
Algebra.id
LinearMap.instFunLike
toCotangent
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
β€”sub_eq_zero
mem_toCotangent_ker
toCotangent_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Cotangent
Submodule.addCommMonoid
AddCommGroup.toAddCommMonoid
instAddCommGroupCotangent
Submodule.module
instModuleCotangentOfAlgebra
Algebra.id
LinearMap.instFunLike
toCotangent
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
β€”mem_toCotangent_ker
toCotangent_range πŸ“–mathematicalβ€”LinearMap.range
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Cotangent
Submodule.addCommMonoid
AddCommGroup.toAddCommMonoid
instAddCommGroupCotangent
Submodule.module
instModuleCotangentOfAlgebra
Algebra.id
RingHom.id
RingHomSurjective.ids
toCotangent
Top.top
Submodule
Submodule.instTop
β€”Submodule.range_mkQ
toCotangent_surjective πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Cotangent
DFunLike.coe
LinearMap
RingHom.id
Submodule.addCommMonoid
AddCommGroup.toAddCommMonoid
instAddCommGroupCotangent
Submodule.module
instModuleCotangentOfAlgebra
Algebra.id
LinearMap.instFunLike
toCotangent
β€”Submodule.mkQ_surjective
toCotangent_to_quotient_square πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Cotangent
HasQuotient.Quotient
Ideal
instHasQuotient_1
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
AddCommGroup.toAddCommMonoid
instAddCommGroupCotangent
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Quotient.commRing
instModuleCotangentOfAlgebra
Submodule.Quotient.module
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
LinearMap.instFunLike
cotangentToQuotientSquare
SetLike.instMembership
Submodule.setLike
NonAssocSemiring.toNonUnitalNonAssocSemiring
Submodule.addCommMonoid
Submodule.module
toCotangent
Ring.toSemiring
Submodule
Submodule.hasQuotient
Submodule.Quotient.addCommGroup
Submodule.mkQ
β€”β€”
to_quotient_square_comp_toCotangent πŸ“–mathematicalβ€”LinearMap.comp
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Cotangent
HasQuotient.Quotient
instHasQuotient_1
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Submodule.addCommMonoid
AddCommGroup.toAddCommMonoid
instAddCommGroupCotangent
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Quotient.commRing
Submodule.module
instModuleCotangentOfAlgebra
Submodule.Quotient.module
CommRing.toRing
Ring.toAddCommGroup
RingHom.id
RingHomCompTriple.ids
cotangentToQuotientSquare
toCotangent
Submodule
Ring.toSemiring
Submodule.hasQuotient
Submodule.Quotient.addCommGroup
Submodule.mkQ
Submodule.subtype
β€”LinearMap.ext
RingHomCompTriple.ids

Ideal.Algebra

Definitions

NameCategoryTheorems
kerSquareLift πŸ“–CompOp
4 mathmath: Ideal.instIsScalarTowerQuotientHPowKerRingHomAlgebraMapOfNat, tensorKaehlerQuotKerSqEquiv_symm_tmul_D, tensorKaehlerQuotKerSqEquiv_tmul_D, derivationQuotKerSq_mk

Ideal.Cotangent

Theorems

NameKindAssumesProvesValidatesDepends On
smul_eq_zero_of_mem πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.Cotangent
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Ideal.instAddCommGroupCotangent
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
Ideal.instModuleCotangentOfAlgebra
Algebra.id
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”Ideal.toCotangent_surjective
IsScalarTower.right
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
Ideal.toCotangent_eq_zero
pow_two
Ideal.mul_mem_mul

IsLocalRing

Definitions

NameCategoryTheorems
CotangentSpace πŸ“–CompOp
10 mathmath: finrank_CotangentSpace_eq_one_iff, finrank_cotangentSpace_eq_zero, finrank_CotangentSpace_eq_one, subsingleton_cotangentSpace_iff, finrank_cotangentSpace_eq_zero_iff, instFiniteDimensionalResidueFieldCotangentSpaceOfIsNoetherianRing, tfae_of_isNoetherianRing_of_isLocalRing_of_isDomain, finrank_cotangentSpace_le_one_iff, instIsScalarTowerResidueFieldCotangentSpace, IsDiscreteValuationRing.TFAE
instModuleResidueFieldCotangentSpace πŸ“–CompOp
10 mathmath: finrank_CotangentSpace_eq_one_iff, finrank_cotangentSpace_eq_zero, finrank_CotangentSpace_eq_one, finrank_cotangentSpace_eq_zero_iff, instFiniteDimensionalResidueFieldCotangentSpaceOfIsNoetherianRing, tfae_of_isNoetherianRing_of_isLocalRing_of_isDomain, finrank_cotangentSpace_le_one_iff, instIsScalarTowerResidueFieldCotangentSpace, IsDiscreteValuationRing.TFAE, CotangentSpace.span_image_eq_top_iff

Theorems

NameKindAssumesProvesValidatesDepends On
finrank_cotangentSpace_eq_zero πŸ“–mathematicalβ€”Module.finrank
ResidueField
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Field.instIsLocalRing
CotangentSpace
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ResidueField.field
AddCommGroup.toAddCommMonoid
Ideal.instAddCommGroupCotangent
maximalIdeal
CommRing.toCommSemiring
instModuleResidueFieldCotangentSpace
β€”Field.instIsLocalRing
finrank_cotangentSpace_eq_zero_iff
isNoetherian_of_isNoetherianRing_of_finite
IsSimpleModule.instIsNoetherian
instIsSimpleModule
FiniteDimensional.finiteDimensional_self
Field.toIsField
finrank_cotangentSpace_eq_zero_iff πŸ“–mathematicalβ€”Module.finrank
ResidueField
CotangentSpace
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ResidueField.field
AddCommGroup.toAddCommMonoid
Ideal.instAddCommGroupCotangent
maximalIdeal
CommRing.toCommSemiring
instModuleResidueFieldCotangentSpace
IsField
CommSemiring.toSemiring
β€”Module.finrank_zero_iff
IsNoetherianRing.strongRankCondition
toNontrivial
Field.instIsLocalRing
IsSimpleModule.instIsNoetherian
instIsSimpleModule
instFiniteDimensionalResidueFieldCotangentSpaceOfIsNoetherianRing
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
subsingleton_cotangentSpace_iff
finrank_cotangentSpace_le_one_iff πŸ“–mathematicalβ€”Module.finrank
ResidueField
CotangentSpace
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ResidueField.field
AddCommGroup.toAddCommMonoid
Ideal.instAddCommGroupCotangent
maximalIdeal
CommRing.toCommSemiring
instModuleResidueFieldCotangentSpace
Submodule.IsPrincipal
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”Module.finrank_le_one_iff_top_isPrincipal
IsNoetherianRing.strongRankCondition
toNontrivial
Field.instIsLocalRing
IsSimpleModule.instIsNoetherian
instIsSimpleModule
Module.Free.of_divisionRing
Ideal.instIsTwoSided_1
instFiniteDimensionalResidueFieldCotangentSpaceOfIsNoetherianRing
Submodule.isPrincipal_iff
Function.Surjective.exists
Ideal.toCotangent_surjective
RingHomSurjective.ids
Submodule.map_injective_of_injective
Submodule.injective_subtype
Submodule.map_span
Set.image_singleton
Submodule.map_top
Submodule.range_subtype
Submodule.subset_span
Set.mem_singleton
instFiniteDimensionalResidueFieldCotangentSpaceOfIsNoetherianRing πŸ“–mathematicalβ€”FiniteDimensional
ResidueField
CotangentSpace
Field.toDivisionRing
ResidueField.field
Ideal.instAddCommGroupCotangent
maximalIdeal
CommRing.toCommSemiring
instModuleResidueFieldCotangentSpace
β€”Module.Finite.of_restrictScalars_finite
instIsScalarTowerResidueFieldCotangentSpace
Module.IsNoetherian.finite
isNoetherian_submodule'
instIsScalarTowerResidueFieldCotangentSpace πŸ“–mathematicalβ€”IsScalarTower
ResidueField
CotangentSpace
Algebra.toSMul
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ResidueField.field
ResidueField.algebra
Algebra.id
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Ideal.instAddCommGroupCotangent
maximalIdeal
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
instModuleResidueFieldCotangentSpace
CommSemiring.toSemiring
Ideal.instModuleCotangentOfAlgebra
β€”Module.IsTorsionBySet.isScalarTower
Ideal.instIsTwoSided_1
Module.isTorsionBySet_quotient_ideal_smul
IsScalarTower.right
subsingleton_cotangentSpace_iff πŸ“–mathematicalβ€”CotangentSpace
IsField
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”IsScalarTower.right
Ideal.cotangent_subsingleton_iff
isField_iff_maximalIdeal_eq
Ideal.isIdempotentElem_iff_eq_bot_or_top_of_isLocalRing
Ideal.IsMaximal.ne_top
maximalIdeal.isMaximal

IsLocalRing.CotangentSpace

Theorems

NameKindAssumesProvesValidatesDepends On
map_eq_top_iff πŸ“–mathematicalβ€”Submodule.map
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsLocalRing.maximalIdeal
Ideal.Cotangent
Submodule.addCommMonoid
AddCommGroup.toAddCommMonoid
Ideal.instAddCommGroupCotangent
Submodule.module
Ideal.instModuleCotangentOfAlgebra
Algebra.id
RingHom.id
RingHomSurjective.ids
Ideal.toCotangent
Top.top
Submodule
Submodule.instTop
β€”RingHomSurjective.ids
eq_top_iff
Submodule.map_le_map_iff_of_injective
Submodule.injective_subtype
Submodule.map_top
Submodule.range_subtype
Submodule.le_of_le_smul_of_le_jacobson_bot
IsNoetherian.noetherian
Eq.ge
IsLocalRing.jacobson_eq_maximalIdeal
bot_ne_top
Ideal.instNontrivial
IsLocalRing.toNontrivial
IsScalarTower.left
IsScalarTower.right
smul_eq_mul
pow_two
Ideal.map_toCotangent_ker
Submodule.map_sup
Submodule.comap_map_eq
Submodule.comap_top
le_refl
Ideal.toCotangent_range
span_image_eq_top_iff πŸ“–mathematicalβ€”Submodule.span
IsLocalRing.ResidueField
Ideal.Cotangent
IsLocalRing.maximalIdeal
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
AddCommGroup.toAddCommMonoid
Ideal.instAddCommGroupCotangent
IsLocalRing.instModuleResidueFieldCotangentSpace
Set.image
Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
DFunLike.coe
LinearMap
RingHom.id
Submodule.addCommMonoid
Submodule.module
Ideal.instModuleCotangentOfAlgebra
Algebra.id
LinearMap.instFunLike
Ideal.toCotangent
Top.top
Submodule
Submodule.instTop
β€”RingHomSurjective.ids
map_eq_top_iff
IsLocalRing.instIsScalarTowerResidueFieldCotangentSpace
Submodule.restrictScalars_injective
Submodule.restrictScalars_span
Ideal.Quotient.mk_surjective
Set.image_congr
Submodule.map_span

---

← Back to Index