Documentation

Mathlib.RingTheory.Ideal.Cotangent

The module I ⧸ I ^ 2 #

In this file, we provide special API support for the module I ⧸ I ^ 2. The official definition is a quotient module of I, but the alternative definition as an ideal of R ⧸ I ^ 2 is also given, and the two are R-equivalent as in Ideal.cotangentEquivIdeal.

Additional support is also given to the cotangent space m ⧸ m ^ 2 of a local ring.

def Ideal.Cotangent {R : Type u} [CommRing R] (I : Ideal R) :

I ⧸ I ^ 2 as a quotient of I.

Equations
    Instances For
      instance Ideal.instModuleCotangentOfAlgebra {R : Type u_2} {S : Type u_1} [CommRing R] [CommSemiring S] [Algebra S R] (I : Ideal R) :
      Equations
        instance Ideal.instIsScalarTowerCotangent {R : Type u_3} {S : Type u_1} {S' : Type u_2} [CommRing R] [CommSemiring S] [Algebra S R] [CommSemiring S'] [Algebra S' R] [Algebra S S'] [IsScalarTower S S' R] (I : Ideal R) :
        Equations
          def Ideal.toCotangent {R : Type u} [CommRing R] (I : Ideal R) :

          The quotient map from I to I ⧸ I ^ 2.

          Equations
            Instances For
              theorem Ideal.toCotangent_apply {R : Type u} [CommRing R] (I : Ideal R) (a✝ : I) :
              theorem Ideal.mem_toCotangent_ker {R : Type u} [CommRing R] (I : Ideal R) {x : I} :
              x I.toCotangent.ker x I ^ 2
              theorem Ideal.toCotangent_eq {R : Type u} [CommRing R] (I : Ideal R) {x y : I} :
              I.toCotangent x = I.toCotangent y x - y I ^ 2
              theorem Ideal.toCotangent_eq_zero {R : Type u} [CommRing R] (I : Ideal R) (x : I) :
              I.toCotangent x = 0 x I ^ 2

              The inclusion map I ⧸ I ^ 2 to R ⧸ I ^ 2.

              Equations
                Instances For
                  theorem Ideal.Cotangent.smul_eq_zero_of_mem {R : Type u} [CommRing R] {I : Ideal R} {x : R} (hx : x I) (m : I.Cotangent) :
                  x m = 0
                  def Ideal.cotangentIdeal {R : Type u} [CommRing R] (I : Ideal R) :
                  Ideal (R I ^ 2)

                  I ⧸ I ^ 2 as an ideal of R ⧸ I ^ 2.

                  Equations
                    Instances For
                      noncomputable def Ideal.cotangentEquivIdeal {R : Type u} [CommRing R] (I : Ideal R) :

                      The equivalence of the two definitions of I / I ^ 2, either as the quotient of I or the ideal of R / I ^ 2.

                      Equations
                        Instances For
                          def AlgHom.kerSquareLift {R : Type u} [CommRing R] {A : Type u_1} {B : Type u_2} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :

                          The lift of f : A →ₐ[R] B to A ⧸ J ^ 2 →ₐ[R] B with J being the kernel of f.

                          Equations
                            Instances For
                              theorem AlgHom.kerSquareLift_mk {R : Type u} [CommRing R] {A : Type u_1} {B : Type u_2} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) (x : A) :
                              instance Ideal.Algebra.kerSquareLift {R : Type u} [CommRing R] {A : Type u_1} [CommRing A] [Algebra R A] :
                              Equations
                                def Ideal.quotCotangent {R : Type u} [CommRing R] (I : Ideal R) :

                                The quotient ring of I ⧸ I ^ 2 is R ⧸ I.

                                Equations
                                  Instances For
                                    def Ideal.mapCotangent {R : Type u} [CommRing R] {A : Type u_1} {B : Type u_2} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (I₁ : Ideal A) (I₂ : Ideal B) (f : A →ₐ[R] B) (h : I₁ comap f I₂) :

                                    The map I/I² → J/J² if I ≤ f⁻¹(J).

                                    Equations
                                      Instances For
                                        @[simp]
                                        theorem Ideal.mapCotangent_toCotangent {R : Type u} [CommRing R] {A : Type u_1} {B : Type u_2} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (I₁ : Ideal A) (I₂ : Ideal B) (f : A →ₐ[R] B) (h : I₁ comap f I₂) (x : I₁) :
                                        (I₁.mapCotangent I₂ f h) (I₁.toCotangent x) = I₂.toCotangent f x,
                                        @[reducible, inline]

                                        The A ⧸ I-vector space I ⧸ I ^ 2.

                                        Equations
                                          Instances For