Documentation Verification Report

Height

πŸ“ Source: Mathlib/RingTheory/Ideal/Height.lean

Statistics

MetricCount
DefinitionsFiniteHeight, height, primeHeight
3
Theoremseq_top_or_height_ne_top, exists_isMaximal_height, exists_ltSeries_length_eq_height, finiteHeight_iff, finiteHeight_iff_lt, finiteHeight_of_finiteRingKrullDim, finiteHeight_of_le, height_bot, height_eq_primeHeight, height_le_iff, height_le_iff_covBy, height_le_ringKrullDim_of_ne_top, height_lt_top, height_mono, height_ne_top, height_of_subsingleton, height_strict_mono_of_is_prime, height_top, isMaximal_of_primeHeight_eq_ringKrullDim, mem_minimalPrimes_of_height_eq, primeHeight_add_one_le_of_lt, primeHeight_eq_ringKrullDim_iff, primeHeight_eq_zero_iff, primeHeight_le_ringKrullDim, primeHeight_lt_top, primeHeight_mono, primeHeight_ne_top, primeHeight_strict_mono, sup_height_eq_ringKrullDim, sup_primeHeight_eq_ringKrullDim, sup_primeHeight_of_maximal_eq_ringKrullDim, maximalIdeal_height_eq_ringKrullDim, maximalIdeal_primeHeight_eq_ringKrullDim, ringKrullDim_eq_height, height_comap, height_map_of_disjoint, primeHeight_comap, krullDimLE_of_isLocalization_maximal, height_comap, height_map, exists_spanRank_le_and_le_height_of_le_height, mem_minimalPrimes_of_primeHeight_eq_height, ringKrullDim_le_iff_height_le, ringKrullDim_le_iff_isMaximal_height_le
44
Total47

Ideal

Definitions

NameCategoryTheorems
FiniteHeight πŸ“–CompData
5 mathmath: finiteHeight_of_le, finiteHeight_of_isNoetherianRing, finiteHeight_iff, finiteHeight_iff_lt, finiteHeight_of_finiteRingKrullDim
height πŸ“–CompOp
45 mathmath: height_le_spanFinrank, height_le_spanRank, height_le_iff_exists_minimalPrimes, height_of_subsingleton, height_top, height_lt_top, exists_finset_card_eq_height_of_isNoetherianRing, height_eq_height_add_of_liesOver_of_hasGoingDown, height_strict_mono_of_is_prime, Polynomial.height_eq_height_add_one, exists_ltSeries_length_eq_height, IsPrincipalIdealRing.height_eq_one_of_isMaximal, height_le_height_add_of_liesOver, height_le_height_add_one_of_mem, Polynomial.height_map_C, height_le_card_of_mem_minimalPrimes_span, exists_isMaximal_height, height_le_spanRank_toENat_of_mem_minimal_primes, IsLocalization.height_map_of_disjoint, ringKrullDim_le_iff_height_le, height_mono, height_eq_primeHeight, height_le_ringKrullDim_quotient_add_one, height_le_iff, IsLocalization.AtPrime.ringKrullDim_eq_height, height_le_ringKrullDim_quotient_add_encard, RingEquiv.height_comap, height_le_iff_covBy, ringKrullDim_le_iff_isMaximal_height_le, RingEquiv.height_map, map_height_le_one_of_mem_minimalPrimes, sup_height_eq_ringKrullDim, finiteHeight_iff_lt, height_le_ringKrullDim_quotient_add_spanFinrank, height_le_height_add_encard_of_subset, height_le_one_of_isPrincipal_of_mem_minimalPrimes_of_isLocalRing, IsLocalRing.maximalIdeal_height_eq_ringKrullDim, height_le_one_of_isPrincipal_of_mem_minimalPrimes, exists_spanRank_eq_and_height_eq, height_le_height_add_spanFinrank_of_le, height_le_spanRank_toENat, height_le_card_of_mem_minimalPrimes_span_finset, height_le_ringKrullDim_of_ne_top, height_bot, IsLocalization.height_comap
primeHeight πŸ“–CompOp
12 mathmath: sup_primeHeight_eq_ringKrullDim, primeHeight_mono, primeHeight_lt_top, primeHeight_eq_ringKrullDim_iff, primeHeight_le_ringKrullDim, sup_primeHeight_of_maximal_eq_ringKrullDim, primeHeight_strict_mono, height_eq_primeHeight, primeHeight_add_one_le_of_lt, primeHeight_eq_zero_iff, IsLocalRing.maximalIdeal_primeHeight_eq_ringKrullDim, IsLocalization.primeHeight_comap

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isMaximal_height πŸ“–mathematicalβ€”IsMaximal
CommSemiring.toSemiring
CommRing.toCommSemiring
WithBot.some
ENat
height
ringKrullDim
β€”exists_le_maximal
IsPrime.ne_top'
PrimeSpectrum.isPrime
le_antisymm
height_le_ringKrullDim_of_ne_top
IsMaximal.isPrime'
height_eq_primeHeight
Eq.le
LTSeries.height_last_longestOf
height_mono
exists_ltSeries_length_eq_height πŸ“–mathematicalβ€”RelSeries.last
PrimeSpectrum
CommRing.toCommSemiring
setOf
Preorder.toLT
PartialOrder.toPreorder
PrimeSpectrum.instPartialOrder
IsPrime
CommSemiring.toSemiring
ENat
ENat.instNatCast
RelSeries.length
height
β€”height_ne_top
IsPrime.ne_top
height_eq_primeHeight
primeHeight.eq_1
Order.exists_series_of_height_eq_coe
WithTop.some_eq_coe
ENat.some_eq_coe
finiteHeight_iff πŸ“–mathematicalβ€”FiniteHeight
Top.top
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”
finiteHeight_iff_lt πŸ“–mathematicalβ€”FiniteHeight
Top.top
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
ENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
height
instTopENat
β€”finiteHeight_iff
lt_top_iff_ne_top
finiteHeight_of_finiteRingKrullDim πŸ“–mathematicalβ€”FiniteHeightβ€”finiteHeight_iff
lt_top_iff_ne_top
WithBot.coe_lt_coe
ringKrullDim_lt_top
height_le_ringKrullDim_of_ne_top
lt_of_le_of_lt
finiteHeight_of_le πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
FiniteHeightβ€”lt_top_iff_ne_top
LE.le.trans_lt
height_mono
height_lt_top
height_bot πŸ“–mathematicalβ€”height
Bot.bot
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
ENat
instZeroENat
β€”nonempty_minimalPrimes
top_ne_bot
instNontrivial
primeHeight_eq_zero_iff
height_eq_primeHeight πŸ“–mathematicalβ€”height
primeHeight
β€”minimalPrimes_eq_subsingleton_self
iInf_congr_Prop
iInf_iInf_eq_left
height_le_iff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
height
ENat.instNatCast
Preorder.toLT
β€”height_eq_primeHeight
primeHeight.eq_1
Order.height_le_coe_iff
Equiv.forall_congr_left
height_le_iff_covBy πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
height
ENat.instNatCast
Preorder.toLT
β€”height_le_iff
exists_le_covBy_of_lt
instIsStronglyCoatomicOfWellFoundedGT
Subtype.wellFoundedGT
wellFoundedGT
LE.le.trans_lt
height_mono
height_le_ringKrullDim_of_ne_top πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
WithBot.some
height
ringKrullDim
CommRing.toCommSemiring
β€”height.eq_1
nonempty_minimalPrimes
minimalPrimes_isPrime
le_trans
iInfβ‚‚_le
primeHeight_le_ringKrullDim
height_lt_top πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
height
Top.top
instTopENat
β€”Ne.lt_top
height_ne_top
height_mono πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
ENat
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
height
β€”le_iInfβ‚‚
minimalPrimes_isPrime
exists_minimalPrimes_le
LE.le.trans
iInfβ‚‚_le
primeHeight_mono
height_ne_top πŸ“–β€”β€”β€”β€”FiniteHeight.eq_top_or_height_ne_top
height_of_subsingleton πŸ“–mathematicalβ€”height
Top.top
ENat
instTopENat
β€”Unique.instSubsingleton
height_top
height_strict_mono_of_is_prime πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
ENat
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
height
β€”height_eq_primeHeight
height_top
primeHeight_lt_top
ENat.add_one_le_iff
primeHeight_ne_top
height.eq_1
le_iInfβ‚‚
lt_of_lt_of_le
primeHeight_add_one_le_of_lt
height_top πŸ“–mathematicalβ€”height
Top.top
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
ENat
instTopENat
β€”minimalPrimes_top
iInf_congr_Prop
iInf_neg
iInf_top
isMaximal_of_primeHeight_eq_ringKrullDim πŸ“–mathematicalWithBot.some
ENat
primeHeight
ringKrullDim
CommRing.toCommSemiring
IsMaximal
CommSemiring.toSemiring
β€”ringKrullDim_ne_top
primeHeight.congr_simp
height_top
exists_le_maximal
lt_or_eq_of_le
IsMaximal.isPrime'
primeHeight_strict_mono
finiteHeight_of_finiteRingKrullDim
primeHeight_le_ringKrullDim
mem_minimalPrimes_of_height_eq πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
ENat
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
height
Set
Set.instMembership
minimalPrimes
β€”exists_minimalPrimes_le
eq_of_le_of_not_lt
finiteHeight_of_le
IsPrime.ne_top'
lt_irrefl
LT.lt.trans_le
height_strict_mono_of_is_prime
LE.le.trans
height_mono
primeHeight_add_one_le_of_lt πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
ENat
Preorder.toLE
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
instCommSemiringENat
primeHeight
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Order.height_add_one_le
primeHeight_eq_ringKrullDim_iff πŸ“–mathematicalβ€”WithBot.some
ENat
primeHeight
ringKrullDim
CommRing.toCommSemiring
IsLocalRing.maximalIdeal
β€”IsLocalRing.eq_maximalIdeal
isMaximal_of_primeHeight_eq_ringKrullDim
IsLocalRing.maximalIdeal_primeHeight_eq_ringKrullDim
primeHeight_eq_zero_iff πŸ“–mathematicalβ€”primeHeight
ENat
instZeroENat
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
minimalPrimes
β€”primeHeight.eq_1
Order.height_eq_zero
minimalPrimes.eq_1
minimalPrimes.eq_1
Mathlib.Tactic.Push.not_forall_eq
PrimeSpectrum.isPrime
primeHeight_le_ringKrullDim πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
WithBot.some
primeHeight
ringKrullDim
CommRing.toCommSemiring
β€”Order.height_le_krullDim
primeHeight_lt_top πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
primeHeight
Top.top
instTopENat
β€”height_eq_primeHeight
height_lt_top
IsPrime.ne_top
primeHeight_mono πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
ENat
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
primeHeight
β€”Order.height_mono
primeHeight_ne_top πŸ“–β€”β€”β€”β€”height_eq_primeHeight
height_ne_top
IsPrime.ne_top
primeHeight_strict_mono πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
ENat
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
primeHeight
β€”primeHeight.eq_1
finiteHeight_iff
lt_top_iff_ne_top
height_eq_primeHeight
lt_of_le_of_lt
primeHeight_mono
LT.lt.le
primeHeight_lt_top
Order.height_strictMono
sup_height_eq_ringKrullDim πŸ“–mathematicalβ€”WithBot.some
ENat
iSup
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Top.top
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
height
ringKrullDim
β€”le_antisymm
WithBot.coe_iSup
le_top
iSup_le
iSup_congr_Prop
height_top
iSup_neg
bot_eq_zero'
iSup_pos
WithBot.coe_le_coe
le_trans
PrimeSpectrum.isPrime
height_eq_primeHeight
le_iSup
le_rfl
le_iSup_of_le
IsPrime.ne_top'
sup_primeHeight_eq_ringKrullDim πŸ“–mathematicalβ€”WithBot.some
ENat
iSup
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
IsPrime
primeHeight
ringKrullDim
β€”sup_height_eq_ringKrullDim
le_antisymm
iSup_mono
iSup_mono'
IsPrime.ne_top
height_eq_primeHeight
le_refl
iSup_congr_Prop
height_top
iSup_neg
bot_eq_zero'
Set.nonempty_coe_sort
nonempty_minimalPrimes
le_iSup_of_le
iInf_le_of_le
le_rfl
iSup_pos
sup_primeHeight_of_maximal_eq_ringKrullDim πŸ“–mathematicalβ€”WithBot.some
ENat
iSup
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
IsMaximal
primeHeight
IsMaximal.isPrime'
ringKrullDim
β€”IsMaximal.isPrime'
sup_primeHeight_eq_ringKrullDim
le_antisymm
iSup_mono
iSup_mono'
IsMaximal.isPrime
le_rfl
eq_or_ne
exists_le_maximal
primeHeight_mono

Ideal.FiniteHeight

Theorems

NameKindAssumesProvesValidatesDepends On
eq_top_or_height_ne_top πŸ“–mathematicalβ€”Top.top
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”

IsLocalRing

Theorems

NameKindAssumesProvesValidatesDepends On
maximalIdeal_height_eq_ringKrullDim πŸ“–mathematicalβ€”WithBot.some
ENat
Ideal.height
maximalIdeal
CommRing.toCommSemiring
ringKrullDim
β€”Ideal.IsMaximal.isPrime'
maximalIdeal.isMaximal
Ideal.height_eq_primeHeight
maximalIdeal_primeHeight_eq_ringKrullDim
maximalIdeal_primeHeight_eq_ringKrullDim πŸ“–mathematicalβ€”WithBot.some
ENat
Ideal.primeHeight
maximalIdeal
CommRing.toCommSemiring
Ideal.IsMaximal.isPrime'
maximalIdeal.isMaximal
ringKrullDim
β€”Ideal.IsMaximal.isPrime'
maximalIdeal.isMaximal
ringKrullDim.eq_1
Ideal.primeHeight.eq_1
Order.height_top_eq_krullDim

IsLocalization

Theorems

NameKindAssumesProvesValidatesDepends On
height_comap πŸ“–mathematicalβ€”Ideal.height
Ideal.comap
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
β€”RingHom.instRingHomClass
Ideal.height.eq_1
Ideal.IsPrime.under
iInf_congr_Prop
primeHeight_comap
minimalPrimes_comap
iInf_image
height_map_of_disjoint πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Submonoid.instSetLike
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Ideal.height
Ideal.map
RingHom
RingHom.instFunLike
algebraMap
β€”isPrime_of_isPrime_disjoint
RingHom.instRingHomClass
Ideal.IsPrime.under
isLocalization_isLocalization_atPrime_isLocalization
OreLocalization.instIsScalarTower
IsScalarTower.right
Localization.isLocalization
ringKrullDim_eq_of_ringEquiv
comap_map_of_isPrime_disjoint
AtPrime.congr_simp
WithBot.coe_eq_coe
AtPrime.ringKrullDim_eq_height
primeHeight_comap πŸ“–mathematicalβ€”Ideal.primeHeight
Ideal.comap
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
Ideal.IsPrime.under
β€”RingHom.instRingHomClass
Ideal.IsPrime.under
Ideal.primeHeight.eq_1
Order.height_eq_krullDim_Iic
Set.disjoint_of_subset_right
Order.krullDim_eq_of_orderIso
PrimeSpectrum.isPrime
Ideal.comap_mono
Ideal.map_le_iff_le_comap
PrimeSpectrum.ext_iff
Equiv.left_inv
Equiv.right_inv
RelIso.map_rel_iff

IsLocalization.AtPrime

Theorems

NameKindAssumesProvesValidatesDepends On
ringKrullDim_eq_height πŸ“–mathematicalβ€”ringKrullDim
CommRing.toCommSemiring
WithBot.some
ENat
Ideal.height
β€”isLocalRing
Ideal.IsMaximal.isPrime'
IsLocalRing.maximalIdeal.isMaximal
IsLocalRing.maximalIdeal_primeHeight_eq_ringKrullDim
RingHom.instRingHomClass
Ideal.IsPrime.under
IsLocalization.primeHeight_comap
comap_maximalIdeal
Ideal.height_eq_primeHeight

Ring

Theorems

NameKindAssumesProvesValidatesDepends On
krullDimLE_of_isLocalization_maximal πŸ“–β€”IsLocalization.AtPrime
CommRing.toCommSemiring
Ideal.IsMaximal.isPrime'
KrullDimLE
β€”β€”Ideal.IsMaximal.isPrime'
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
ringKrullDim_eq_bot_of_subsingleton
Ideal.sup_primeHeight_of_maximal_eq_ringKrullDim
WithBot.coe_le_coe
iSupβ‚‚_le_iff
Ideal.height_eq_primeHeight
IsLocalization.AtPrime.ringKrullDim_eq_height

RingEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
height_comap πŸ“–mathematicalβ€”Ideal.height
Ideal.comap
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
CommSemiring.toSemiring
CommRing.toCommSemiring
EquivLike.toFunLike
instEquivLike
RingEquivClass.toRingHomClass
Semiring.toNonAssocSemiring
instRingEquivClass
β€”RingEquivClass.toRingHomClass
instRingEquivClass
Equiv.iInf_congr
RingHom.instRingHomClass
Ideal.comap_coe
Ideal.comap_minimalPrimes_eq_of_surjective
surjective
Function.Injective.mem_set_image
OrderIso.injective
height_map πŸ“–mathematicalβ€”Ideal.height
Ideal.map
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
CommSemiring.toSemiring
CommRing.toCommSemiring
EquivLike.toFunLike
instEquivLike
β€”RingEquivClass.toRingHomClass
instRingEquivClass
Ideal.comap_symm
height_comap

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
exists_spanRank_le_and_le_height_of_le_height πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ENat.instNatCast
Ideal.height
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Cardinal
Cardinal.instLE
Submodule.spanRank
Cardinal.instNatCast
β€”bot_le
Submodule.spanRank_bot
le_refl
zero_le
LE.le.trans
WithTop.coe_le_coe
Set.Finite.subset
Ideal.finite_minimalPrimes_of_isNoetherianRing
Iff.not
Ideal.subset_union_prime
Set.Finite.mem_toFinset
Mathlib.Tactic.Push.not_and_eq
Ideal.height_mono
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
not_lt
sup_le
Ideal.span_le
Set.singleton_subset_iff
Submodule.spanRank_sup_le_sum_spanRank
Nat.cast_add
Nat.cast_one
add_le_add
Cardinal.addLeftMono
Cardinal.addRightMono
Submodule.spanRank_span_le_card
Cardinal.mk_fintype
Fintype.card_unique
le_iInfβ‚‚
Ideal.height_eq_primeHeight
le_top
le_sup_left
le_antisymm
mem_minimalPrimes_of_primeHeight_eq_height
Ideal.mem_sup_right
Ideal.subset_span
Set.mem_singleton
Order.add_one_le_of_lt
lt_of_le_of_ne
mem_minimalPrimes_of_primeHeight_eq_height πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.primeHeight
Ideal.height
Set
Set.instMembership
Ideal.minimalPrimes
β€”Ideal.mem_minimalPrimes_of_height_eq
le_refl
Ideal.height_eq_primeHeight
ringKrullDim_le_iff_height_le πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ringKrullDim
CommRing.toCommSemiring
WithBot.some
Ideal.height
β€”ringKrullDim.eq_1
Order.krullDim_eq_iSup_height
iSup_le_iff
Ideal.height_eq_primeHeight
PrimeSpectrum.isPrime
ringKrullDim_le_iff_isMaximal_height_le πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ringKrullDim
CommRing.toCommSemiring
WithBot.some
Ideal.height
β€”ringKrullDim_le_iff_height_le
Ideal.IsMaximal.isPrime
Ideal.exists_le_maximal
Ideal.IsPrime.ne_top
le_trans
Ideal.height_mono

---

← Back to Index