Documentation

Mathlib.RingTheory.Ideal.Height

The Height of an Ideal #

In this file, we define the height of a prime ideal and the height of an ideal.

Main definitions #

noncomputable def Ideal.primeHeight {R : Type u_1} [CommRing R] (I : Ideal R) [hI : I.IsPrime] :

The height of a prime ideal is defined as the supremum of the lengths of strictly decreasing chains of prime ideals below it.

Equations
    Instances For
      noncomputable def Ideal.height {R : Type u_1} [CommRing R] (I : Ideal R) :

      The height of an ideal is defined as the infimum of the heights of its minimal prime ideals.

      Equations
        Instances For
          theorem Ideal.height_eq_primeHeight {R : Type u_1} [CommRing R] (I : Ideal R) [I.IsPrime] :

          For a prime ideal, its height equals its prime height.

          class Ideal.FiniteHeight {R : Type u_1} [CommRing R] (I : Ideal R) :

          An ideal has finite height if it is either the unit ideal or its height is finite. We include the unit ideal in order to have the instance IsNoetherianRing R → FiniteHeight I.

          Instances
            theorem Ideal.height_ne_top {R : Type u_1} [CommRing R] {I : Ideal R} (hI : I ) [I.FiniteHeight] :
            theorem Ideal.height_lt_top {R : Type u_1} [CommRing R] {I : Ideal R} (hI : I ) [I.FiniteHeight] :
            theorem Ideal.exists_ltSeries_length_eq_height {R : Type u_1} [CommRing R] (p : Ideal R) [p.IsPrime] [p.FiniteHeight] :
            ∃ (l : LTSeries (PrimeSpectrum R)), RelSeries.last l = { asIdeal := p, isPrime := } l.length = p.height
            theorem Ideal.height_mono {R : Type u_1} [CommRing R] {I J : Ideal R} (h : I J) :

            If R has finite Krull dimension, there exists a maximal ideal m with ht m = dim R.

            theorem Ideal.finiteHeight_of_le {R : Type u_1} [CommRing R] {I J : Ideal R} (e : I J) (hJ : J ) [J.FiniteHeight] :

            If J has finite height and I ≤ J, then I has finite height

            theorem Ideal.mem_minimalPrimes_of_height_eq {R : Type u_1} [CommRing R] {I J : Ideal R} (e : I J) [J.IsPrime] [J.FiniteHeight] (e' : J.height I.height) :

            If J is a prime ideal containing I, and its height is less than or equal to the height of I, then J is a minimal prime over I

            A prime ideal has height zero if and only if it is minimal

            @[simp]
            theorem Ideal.height_bot {R : Type u_1} [CommRing R] [Nontrivial R] :
            @[simp]

            In a trivial commutative ring, the height of any ideal is .

            @[simp]

            The prime height of the maximal ideal equals the Krull dimension in a local ring

            @[simp]

            The height of the maximal ideal equals the Krull dimension in a local ring.

            For a local ring with finite Krull dimension, a prime ideal has height equal to the Krull dimension if and only if it is the maximal ideal.

            theorem Ideal.height_le_iff {R : Type u_1} [CommRing R] {p : Ideal R} {n : } [p.IsPrime] :
            p.height n ∀ (q : Ideal R), q.IsPrimeq < pq.height < n
            theorem Ideal.height_le_iff_covBy {R : Type u_1} [CommRing R] {p : Ideal R} {n : } [p.IsPrime] [IsNoetherianRing R] :
            p.height n ∀ (q : Ideal R), q.IsPrimeq < p(∀ (q' : Ideal R), q'.IsPrimeq < q'¬q' < p)q.height < n
            @[simp]
            theorem RingEquiv.height_comap {R : Type u_1} [CommRing R] {S : Type u_2} [CommRing S] (e : R ≃+* S) (I : Ideal S) :
            @[simp]
            theorem RingEquiv.height_map {R : Type u_1} [CommRing R] {S : Type u_2} [CommRing S] (e : R ≃+* S) (I : Ideal R) :
            theorem ringKrullDim_le_iff_height_le {R : Type u_2} [CommRing R] (n : WithBot ℕ∞) :
            ringKrullDim R n ∀ ⦃p : Ideal R⦄, p.IsPrimep.height n

            dim R ≤ n if and only if the height of all prime ideals is less than n.

            theorem ringKrullDim_le_iff_isMaximal_height_le {R : Type u_2} [CommRing R] (n : WithBot ℕ∞) :
            ringKrullDim R n ∀ ⦃m : Ideal R⦄, m.IsMaximalm.height n

            dim R ≤ n if and only if the height of all maximal ideals is less than n.

            theorem IsLocalization.height_map_of_disjoint {R : Type u_1} [CommRing R] {S : Type u_2} [CommRing S] [Algebra R S] (M : Submonoid R) [IsLocalization M S] (p : Ideal R) [p.IsPrime] (h : Disjoint M p) :
            theorem exists_spanRank_le_and_le_height_of_le_height {R : Type u_1} [CommRing R] [IsNoetherianRing R] (I : Ideal R) (r : ) (hr : r I.height) :
            JI, Submodule.spanRank J r r J.height
            theorem Ideal.sup_height_eq_ringKrullDim {R : Type u_1} [CommRing R] [Nontrivial R] :
            (⨆ (I : Ideal R), ⨆ (_ : I ), I.height) = ringKrullDim R

            In a nontrivial commutative ring R, the supremum of heights of all ideals is equal to the Krull dimension of R.

            theorem Ideal.sup_primeHeight_eq_ringKrullDim {R : Type u_1} [CommRing R] [Nontrivial R] :
            (⨆ (I : Ideal R), ⨆ (x : I.IsPrime), I.primeHeight) = ringKrullDim R

            In a nontrivial commutative ring R, the supremum of prime heights of all prime ideals is equal to the Krull dimension of R.

            In a nontrivial commutative ring R, the supremum of prime heights of all maximal ideals is equal to the Krull dimension of R.

            theorem Ring.krullDimLE_of_isLocalization_maximal {R : Type u_1} [CommRing R] (Rₚ : (P : Ideal R) → [P.IsMaximal] → Type u_2) [(P : Ideal R) → [inst : P.IsMaximal] → CommRing (Rₚ P)] [(P : Ideal R) → [inst : P.IsMaximal] → Algebra R (Rₚ P)] [∀ (P : Ideal R) [inst : P.IsMaximal], IsLocalization.AtPrime (Rₚ P) P] {n : } (h : ∀ (P : Ideal R) [inst : P.IsMaximal], KrullDimLE n (Rₚ P)) :