Documentation Verification Report

Colon

📁 Source: Mathlib/RingTheory/Ideal/MinimalPrime/Colon.lean

Statistics

MetricCount
Definitions0
Theoremsexists_eq_colon_of_mem_minimalPrimes
1
Total1

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
exists_eq_colon_of_mem_minimalPrimes 📖Ideal
CommSemiring.toSemiring
Set
Set.instMembership
Ideal.minimalPrimes
colon
Set.instSingletonSet
Ideal.minimalPrimes_top
IsScalarTower.right
Ideal.exists_radical_pow_le_of_fg
Ideal.fg_of_isNoetherianRing
Mathlib.Tactic.Contrapose.contrapose₃
pow_zero
Ideal.one_eq_top
Ideal.finite_minimalPrimes_of_isNoetherianRing
IsScalarTower.left
mul_pow
le_imp_le_of_le_of_le
pow_le_pow_left₀
IsOrderedRing.toPosMulMono
instIsOrderedRing
IsOrderedRing.toMulPosMono
mul_nonneg
zero_le
instCanonicallyOrderedAdd
Ideal.mul_le_inf
Ideal.instIsTwoSided
le_refl
Finset.inf_insert
Finset.insert_erase
Set.Finite.mem_toFinset
Finset.inf_id_eq_sInf
Set.Finite.coe_toFinset
Ideal.sInf_minimalPrimes
le_antisymm
Ideal.IsPrime.pow_le_iff
Ideal.IsPrime.inf_le'
Nat.find_spec
mem_colon_singleton
smul_smul
mul_pow_sub_one
mul_mem_mul
Module.Finite.fg_top
Module.instFiniteSubtypeMemIdealOfIsNoetherian
Ideal.IsPrime.prod_mem_iff
RingHomSurjective.ids
map_subtype_top
map_injective_of_injective
subtype_injective
map_span
span_le
Set.image_subset_iff
Set.mem_preimage
SetLike.mem_coe
SMulCommClass.smul_comm
smulCommClass_self
Finset.dvd_prod_of_mem
Ideal.mul_mem_right
mul_comm
Ideal.span_singleton_mul_le_iff
SemigroupAction.mul_smul
mul_assoc
Ideal.IsPrime.mul_le
Ideal.span_singleton_le_iff_mem
LE.le.trans
tsub_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
Ideal.top_mul
instIsConcreteLE

---

← Back to Index