Minimal primes over a colon ideal #
We prove that a minimal prime over an ideal of the form N.colon {x} in a Noetherian ring is
itself an ideal of the form N.colon {x'}.
theorem
Submodule.exists_eq_colon_of_mem_minimalPrimes
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
{N : Submodule R M}
{I : Ideal R}
{x : M}
[IsNoetherianRing R]
(hI : I ∈ (N.colon {x}).minimalPrimes)
:
A minimal prime over an ideal of the form N.colon {x} in a Noetherian ring is
itself an ideal of the form N.colon {x'}.