Documentation Verification Report

Index

πŸ“ Source: Mathlib/RingTheory/Ideal/Quotient/Index.lean

Statistics

MetricCount
DefinitionsIndex, Index, Index, Index, Index
5
Theoremsfinite_quotient_pow, finite_quotient_prod, index_pow_le, finite_quotient_smul, index_smul_le
5
Total10

CategoryTheory.Precoverage.ZeroHypercover.Small

Definitions

NameCategoryTheorems
Index πŸ“–CompOp
2 mathmath: CategoryTheory.Precoverage.ZeroHypercover.restrictIndexOfSmall_toPreZeroHypercover, memβ‚€

CategoryTheory.Subfunctor.IsFinite

Definitions

NameCategoryTheorems
Index πŸ“–CompOp
4 mathmath: CategoryTheory.Subfunctor.Subpresheaf.isGeneratedBy_of_isFinite, CategoryTheory.Subfunctor.isGeneratedBy_of_isFinite, instFiniteIndex, CategoryTheory.presheafIsGeneratedBy_of_isFinite

CategoryTheory.Subfunctor.Subpresheaf.IsFinite

Definitions

NameCategoryTheorems
Index πŸ“–CompOpβ€”

FiberBundleCore

Definitions

NameCategoryTheorems
Index πŸ“–CompOpβ€”

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
finite_quotient_pow πŸ“–mathematicalFG
CommSemiring.toSemiring
CommRing.toCommSemiring
Finite
HasQuotient.Quotient
Ideal
instHasQuotient_1
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
β€”pow_zero
one_eq_top
Finite.of_fintype
Submodule.finite_quotient_smul
IsScalarTower.right
finite_quotient_prod πŸ“–mathematicalFG
CommSemiring.toSemiring
CommRing.toCommSemiring
Finite
HasQuotient.Quotient
Ideal
instHasQuotient_1
Finset.prod
CommSemiring.toCommMonoid
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
β€”Finset.induction_on
one_eq_top
Finite.of_fintype
Finset.prod_insert
mul_comm
Submodule.finite_quotient_smul
index_pow_le πŸ“–mathematicalspan
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.coe
Finset
Finset.instSetLike
AddSubgroup.index
AddCommGroup.toAddGroup
Ring.toAddCommGroup
CommRing.toRing
Submodule.toAddSubgroup
Semiring.toModule
Ideal
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Monoid.toNatPow
Nat.instMonoid
Finset.sum
Nat.instAddCommMonoid
Finset.range
Finset.card
β€”finite_quotient_pow
IsScalarTower.right
pow_zero
one_eq_top
AddSubgroup.index_top
LE.le.trans
IsScalarTower.left
Submodule.index_smul_le
le_rfl
pow_mul
pow_succ
geom_sum_succ
mul_comm
le_refl

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
finite_quotient_smul πŸ“–mathematicalFG
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Finite
HasQuotient.Quotient
Submodule
hasQuotient
CommRing.toRing
Ideal
instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”IsScalarTower.left
RingHomInvPair.ids
isScalarTower'
RingHomCompTriple.ids
map_injective_of_injective
RingHomSurjective.ids
injective_subtype
map_comap_subtype
inf_of_le_right
map_smul''
map_top
range_subtype
Nat.card_congr
Module.Finite.of_fg
Module.finite_of_finite
Algebra.to_smulCommClass
Module.Finite.base_change
LT.lt.ne'
Nat.card_pos
AddSubgroup.relIndex_mul_index
smul_le_right
mul_ne_zero
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
AddSubgroup.index_ne_zero_of_finite
AddSubgroup.finite_quotient_of_finiteIndex
index_smul_le πŸ“–mathematicalspan
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.coe
Finset
Finset.instSetLike
AddSubgroup.index
AddCommGroup.toAddGroup
toAddSubgroup
CommRing.toRing
Ideal
Submodule
instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Monoid.toNatPow
Nat.instMonoid
Ring.toAddCommGroup
Finset.card
β€”nonempty_fintype
IsScalarTower.left
AddSubgroup.relIndex_mul_index
smul_le_right
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
Nat.instMulLeftMono
RingHomInvPair.ids
isScalarTower'
RingHomCompTriple.ids
map_injective_of_injective
RingHomSurjective.ids
injective_subtype
map_comap_subtype
inf_of_le_right
map_smul''
map_top
range_subtype
Nat.card_congr
Finsupp.range_linearCombination
Subtype.range_val
LinearMap.mem_range
Eq.ge
IsScalarTower.to_smulCommClass
Ideal.Quotient.isScalarTower
IsScalarTower.right
LinearMap.lTensor_surjective
LinearEquiv.surjective
LE.le.trans
Nat.card_le_card_of_surjective
Finite.of_fintype
Nat.card_eq_fintype_card
Fintype.card_finsupp
Fintype.card_coe

VectorBundleCore

Definitions

NameCategoryTheorems
Index πŸ“–CompOpβ€”

---

← Back to Index