Indices of ideals #
Main result #
Submodule.finite_quotient_smul: LetNbe a finite index f.g.R-submodule, andIbe a finite index ideal. ThenI • Nalso has finite index.Ideal.index_quotient_pow_le: IfIis generated bykelements, the index ofI ^ nis bounded by#(R ⧸ I) ^ (k⁰ + k¹ + ⋯ + kⁿ⁻¹).
theorem
Ideal.index_pow_le
{R : Type u_1}
[CommRing R]
{I : Ideal R}
(s : Finset R)
(hs : span ↑s = I)
[Finite (R ⧸ I)]
(n : ℕ)
:
(Submodule.toAddSubgroup (I ^ n)).index ≤ (Submodule.toAddSubgroup I).index ^ ∑ i ∈ Finset.range n, s.card ^ i