Documentation Verification Report

Lasker

πŸ“ Source: Mathlib/RingTheory/Lasker.lean

Statistics

MetricCount
DefinitionsIsMinimalPrimaryDecomposition, IsLasker, IsMinimalPrimaryDecomposition
3
Theoremsexists_isMinimalPrimaryDecomposition, minimal, minimalPrimes_subset_image_radical, decomposition_erase_inf, exists_minimal_isPrimary_decomposition_of_isPrimary_decomposition, isLasker, isPrimary_decomposition_pairwise_ne_radical, isPrimary, exists_isMinimalPrimaryDecomposition, distinct, inf_eq, minimal, primary, decomposition_erase_inf, exists_minimal_isPrimary_decomposition_of_isPrimary_decomposition, isLasker, isPrimary_decomposition_pairwise_ne_radical
17
Total20

Ideal

Definitions

NameCategoryTheorems
IsMinimalPrimaryDecomposition πŸ“–MathDefβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
decomposition_erase_inf πŸ“–mathematicalFinset.inf
Submodule
CommSemiring.toSemiring
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Submodule.instOrderTop
Finset
Finset.instHasSubset
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Finset.erase
β€”Submodule.decomposition_erase_inf
exists_minimal_isPrimary_decomposition_of_isPrimary_decomposition πŸ“–mathematicalFinset.inf
Submodule
CommSemiring.toSemiring
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Submodule.instOrderTop
Submodule.IsPrimary
Set.Pairwise
SetLike.coe
Finset
Finset.instSetLike
Function.onFun
Ideal
radical
Submodule.colon
Set.univ
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Finset.erase
β€”Submodule.exists_minimal_isPrimary_decomposition_of_isPrimary_decomposition
isLasker πŸ“–mathematicalβ€”IsLasker
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”Submodule.isLasker
isPrimary_decomposition_pairwise_ne_radical πŸ“–mathematicalFinset.inf
Submodule
CommSemiring.toSemiring
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Submodule.instOrderTop
Submodule.IsPrimary
Set.Pairwise
SetLike.coe
Finset
Finset.instSetLike
Function.onFun
Ideal
radical
Submodule.colon
Set.univ
β€”Submodule.isPrimary_decomposition_pairwise_ne_radical

Ideal.IsLasker

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isMinimalPrimaryDecomposition πŸ“–mathematicalIsLaskerSubmodule.IsMinimalPrimaryDecompositionβ€”Submodule.IsLasker.exists_isMinimalPrimaryDecomposition
minimal πŸ“–mathematicalIsLaskerSubmodule.IsMinimalPrimaryDecompositionβ€”Submodule.IsLasker.exists_isMinimalPrimaryDecomposition

Ideal.IsMinimalPrimaryDecomposition

Theorems

NameKindAssumesProvesValidatesDepends On
minimalPrimes_subset_image_radical πŸ“–mathematicalSubmodule.IsMinimalPrimaryDecomposition
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semiring.toModule
Set
Ideal
Set.instHasSubset
Ideal.minimalPrimes
Set.image
Ideal.radical
SetLike.coe
Finset
Finset.instSetLike
β€”Ideal.IsPrime.radical
le_trans
Submodule.IsMinimalPrimaryDecomposition.inf_eq
Ideal.radicalInfTopHom_apply
map_finset_inf
InfTopHom.instInfTopHomClass
le_refl
Ideal.radical_mono
Ideal.IsPrime.inf_le'
le_antisymm
Ideal.isPrime_radical
Submodule.IsMinimalPrimaryDecomposition.primary
Eq.trans_le
LE.le.trans
Finset.inf_le
Ideal.le_radical

InfIrred

Theorems

NameKindAssumesProvesValidatesDepends On
isPrimary πŸ“–mathematicalInfIrred
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Submodule.IsPrimaryβ€”Submodule.IsPrimary.eq_1
ne_top
smul_add
Submodule.add_mem
smul_zero
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
SMulCommClass.smul_comm
smulCommClass_self
Submodule.smul_mem
smul_smul
monotone_stabilizes_iff_noetherian
pow_succ
SemigroupAction.mul_smul
sup_eq_left
Submodule.add_eq_sup
le_antisymm
le_add_self
Nat.instCanonicallyOrderedAdd
Submodule.add_mem_iff_right
pow_add
le_inf

Submodule

Definitions

NameCategoryTheorems
IsMinimalPrimaryDecomposition πŸ“–CompData
3 mathmath: Ideal.IsLasker.minimal, Ideal.IsLasker.exists_isMinimalPrimaryDecomposition, IsLasker.exists_isMinimalPrimaryDecomposition

Theorems

NameKindAssumesProvesValidatesDepends On
decomposition_erase_inf πŸ“–mathematicalFinset.inf
Submodule
CommSemiring.toSemiring
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
instOrderTop
Finset
Finset.instHasSubset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Finset.erase
β€”Finset.eraseInduction
Finset.Subset.rfl
Mathlib.Tactic.Push.not_forall_eq
HasSubset.Subset.trans
Finset.instIsTransSubset
Finset.erase_subset
Finset.insert_erase
Finset.inf_insert
inf_of_le_right
exists_minimal_isPrimary_decomposition_of_isPrimary_decomposition πŸ“–mathematicalFinset.inf
Submodule
CommSemiring.toSemiring
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
instOrderTop
IsPrimary
Set.Pairwise
SetLike.coe
Finset
Finset.instSetLike
Function.onFun
Ideal
Ideal.radical
colon
Set.univ
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Finset.erase
β€”isPrimary_decomposition_pairwise_ne_radical
decomposition_erase_inf
Set.Pairwise.mono
isLasker πŸ“–mathematicalβ€”IsLasker
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”InfIrred.isPrimary
exists_infIrred_decomposition
wellFoundedGT
isPrimary_decomposition_pairwise_ne_radical πŸ“–mathematicalFinset.inf
Submodule
CommSemiring.toSemiring
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
instOrderTop
IsPrimary
Set.Pairwise
SetLike.coe
Finset
Finset.instSetLike
Function.onFun
Ideal
Ideal.radical
colon
Set.univ
β€”ext
isPrimary_finsetInf
Finset.coe_image
Mathlib.Tactic.Contrapose.contraposeβ‚„
Ideal.radical_finset_inf
colon_finsetInf

Submodule.IsLasker

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isMinimalPrimaryDecomposition πŸ“–mathematicalIsLaskerSubmodule.IsMinimalPrimaryDecompositionβ€”Submodule.exists_minimal_isPrimary_decomposition_of_isPrimary_decomposition

Submodule.IsMinimalPrimaryDecomposition

Theorems

NameKindAssumesProvesValidatesDepends On
distinct πŸ“–mathematicalSubmodule.IsMinimalPrimaryDecompositionSet.Pairwise
Submodule
CommSemiring.toSemiring
SetLike.coe
Finset
Finset.instSetLike
Function.onFun
Ideal
Ideal.radical
Submodule.colon
Set.univ
β€”β€”
inf_eq πŸ“–mathematicalSubmodule.IsMinimalPrimaryDecompositionFinset.inf
Submodule
CommSemiring.toSemiring
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Submodule.instOrderTop
β€”β€”
minimal πŸ“–mathematicalSubmodule.IsMinimalPrimaryDecomposition
Submodule
CommSemiring.toSemiring
Finset
Finset.instMembership
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Finset.inf
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Submodule.instOrderTop
Finset.erase
β€”β€”
primary πŸ“–mathematicalSubmodule.IsMinimalPrimaryDecomposition
Submodule
CommSemiring.toSemiring
Finset
Finset.instMembership
Submodule.IsPrimaryβ€”β€”

(root)

Definitions

NameCategoryTheorems
IsLasker πŸ“–MathDef
2 mathmath: Ideal.isLasker, Submodule.isLasker

---

← Back to Index