Lasker ring #
Main declarations #
IsLasker: AnR-moduleMsatisfiesIsLasker R Mwhen anyN : Submodule R Mcan be decomposed into finitely many primary submodules.IsLasker.exists_isMinimalPrimaryDecomposition: AnyN : Submodule R Nin anR-moduleMsatisfyingIsLasker R Mcan be decomposed into finitely many primary submodulesNα΅’, such that the decomposition is minimal: eachNα΅’is necessary, and theβAnn(M/Nα΅’)are distinct.Submodule.isLasker: Every Noetherian module is Lasker.
TODO #
One needs to prove that the radicals of minimal decompositions are independent of the precise decomposition.
A Finset of submodules is a minimal primary decomposition of N if the submodules Nα΅’
intersect to N, are primary, the βAnn(M/Nα΅’) are distinct, and each Nα΅’ is necessary.
Instances For
Alias of Submodule.decomposition_erase_inf.
Alias of Submodule.isPrimary_decomposition_pairwise_ne_radical.
Alias of Submodule.exists_minimal_isPrimary_decomposition_of_isPrimary_decomposition.
Alias of Submodule.IsMinimalPrimaryDecomposition.
A Finset of submodules is a minimal primary decomposition of N if the submodules Nα΅’
intersect to N, are primary, the βAnn(M/Nα΅’) are distinct, and each Nα΅’ is necessary.
Equations
Instances For
Alias of Submodule.IsLasker.exists_isMinimalPrimaryDecomposition.
Alias of Submodule.IsLasker.exists_isMinimalPrimaryDecomposition.
The Lasker--Noether theorem: every submodule in a Noetherian module admits a decomposition into primary submodules.
Alias of Submodule.isLasker.
The Lasker--Noether theorem: every submodule in a Noetherian module admits a decomposition into primary submodules.