Documentation Verification Report

Ideal

πŸ“ Source: Mathlib/RingTheory/Localization/Ideal.lean

Statistics

MetricCount
DefinitionsmapFrameHom, orderEmbedding, orderIsoOfPrime, primeSpectrumOrderIso
4
TheoremsalgebraMap_mem_map_algebraMap_iff, bot_lt_comap_prime, coe_primeSpectrumOrderIso_apply_coe_asIdeal, coe_primeSpectrumOrderIso_symm_apply_asIdeal, comap_map_of_isPrimary_disjoint, comap_map_of_isPrime_disjoint, disjoint_comap_iff, ideal_eq_iInf_comap_map_away, instIsDomainLocalizationAlgebraMapSubmonoidPrimeComplOfFaithfulSMul, isPrime_iff_isPrime_disjoint, isPrime_of_isPrime_disjoint, mapFrameHom_apply, map_algebraMap_ne_top_iff_disjoint, map_comap, map_inf, map_radical, mem_map_algebraMap_iff, mk'_mem_iff, mk'_mem_map_algebraMap_iff, of_surjective, orderIsoOfPrime_apply_coe, orderIsoOfPrime_symm_apply_coe, surjective_quotientMap_of_maximal_of_localization, of_isLocalization
24
Total28

IsLocalization

Definitions

NameCategoryTheorems
mapFrameHom πŸ“–CompOp
1 mathmath: mapFrameHom_apply
orderEmbedding πŸ“–CompOpβ€”
orderIsoOfPrime πŸ“–CompOp
2 mathmath: orderIsoOfPrime_symm_apply_coe, orderIsoOfPrime_apply_coe
primeSpectrumOrderIso πŸ“–CompOp
2 mathmath: coe_primeSpectrumOrderIso_symm_apply_asIdeal, coe_primeSpectrumOrderIso_apply_coe_asIdeal

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_mem_map_algebraMap_iff πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.map
RingHom
RingHom.instFunLike
algebraMap
DFunLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”mk'_one
mk'_mem_map_algebraMap_iff
bot_lt_comap_prime πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
nonZeroDivisors
Semiring.toMonoidWithZero
Ideal
Preorder.toLT
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Bot.bot
Submodule.instBot
Ideal.comap
RingHom
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
β€”RingHom.instRingHomClass
Ideal.comap_bot_of_injective
injective
Ideal.isPrime_bot
IsDomain.toNontrivial
isDomain_of_le_nonZeroDivisors
IsDomain.to_noZeroDivisors
OrderIso.lt_iff_lt
Ne.bot_lt
coe_primeSpectrumOrderIso_apply_coe_asIdeal πŸ“–mathematicalβ€”SetLike.coe
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.setLike
PrimeSpectrum.asIdeal
PrimeSpectrum
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
Ideal
DFunLike.coe
RelIso
Preorder.toLE
PartialOrder.toPreorder
PrimeSpectrum.instPartialOrder
RelIso.instFunLike
primeSpectrumOrderIso
Set.preimage
RingHom
RingHom.instFunLike
algebraMap
β€”β€”
coe_primeSpectrumOrderIso_symm_apply_asIdeal πŸ“–mathematicalβ€”SetLike.coe
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.setLike
PrimeSpectrum.asIdeal
DFunLike.coe
RelIso
PrimeSpectrum
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
Ideal
Preorder.toLE
PartialOrder.toPreorder
PrimeSpectrum.instPartialOrder
RelIso.instFunLike
RelIso.symm
primeSpectrumOrderIso
Set.iInter
Set.instHasSubset
Set.preimage
RingHom
RingHom.instFunLike
algebraMap
β€”Set.iInter_congr_Prop
comap_map_of_isPrimary_disjoint πŸ“–mathematicalIdeal.IsPrimary
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Submonoid.instSetLike
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Ideal.comap
RingHom
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
Ideal.map
β€”Mathlib.Tactic.Contrapose.contrapose₁
Set.not_disjoint_iff
pow_mem
Submonoid.instSubmonoidClass
le_antisymm
RingHom.instRingHomClass
mem_map_algebraMap_iff
Ideal.mem_comap
mul_comm
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
eq_iff_exists
Submonoid.coe_mul
mul_assoc
Ideal.mul_mem_left
Ideal.isPrimary_iff
Set.disjoint_left
Ideal.le_comap_map
comap_map_of_isPrime_disjoint πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Submonoid.instSetLike
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Ideal.comap
RingHom
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
Ideal.map
β€”comap_map_of_isPrimary_disjoint
Ideal.IsPrime.isPrimary
disjoint_comap_iff πŸ“–mathematicalβ€”Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Submonoid.instSetLike
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Ideal.comap
RingHom
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
β€”RingHom.instRingHomClass
iff_not_comm
Set.not_disjoint_iff
Submonoid.one_mem
Ideal.eq_top_of_isUnit_mem
map_units
ideal_eq_iInf_comap_map_away πŸ“–mathematicalIdeal.span
CommSemiring.toSemiring
SetLike.coe
Finset
Finset.instSetLike
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
iInf
Submodule.instInfSet
Finset.instMembership
Ideal.comap
Localization.Away
CommSemiring.toCommMonoid
RingHom
OreLocalization.instSemiring
Submonoid.powers
CommMonoid.toMonoid
OreLocalization.oreSetComm
RingHom.instFunLike
algebraMap
OreLocalization.instAlgebra
Algebra.id
RingHom.instRingHomClass
Ideal.map
β€”le_antisymm
RingHom.instRingHomClass
Submodule.mem_of_span_eq_top_of_smul_pow_mem
mem_map_algebraMap_iff
Localization.isLocalization
eq_iff_exists
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
pow_add
mul_assoc
mul_comm
Ideal.mul_mem_left
instIsDomainLocalizationAlgebraMapSubmonoidPrimeComplOfFaithfulSMul πŸ“–mathematicalβ€”IsDomain
Localization
CommRing.toCommMonoid
Algebra.algebraMapSubmonoid
CommRing.toCommSemiring
CommSemiring.toSemiring
Ideal.primeCompl
OreLocalization.instSemiring
OreLocalization.oreSetComm
β€”isDomain_localization
map_le_nonZeroDivisors_of_injective
IsDomain.to_noZeroDivisors
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
FaithfulSMul.algebraMap_injective
Ideal.primeCompl_le_nonZeroDivisors
isPrime_iff_isPrime_disjoint πŸ“–mathematicalβ€”Ideal.IsPrime
CommSemiring.toSemiring
Ideal.comap
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”RingHom.instRingHomClass
Ideal.IsPrime.ne_top
eq_top_iff
OrderEmbedding.le_iff_le
le_of_eq
Ideal.IsPrime.mem_or_mem
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
Ideal.mem_comap
Set.disjoint_left
Ideal.eq_top_of_isUnit_mem
map_units
exists_mk'_eq
mk'_mul
Ideal.IsPrime.mul_mem_iff_mem_or_mem
Ideal.instIsTwoSided
mk'_mem_iff
isPrime_of_isPrime_disjoint πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Submonoid.instSetLike
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Ideal.IsPrime
Ideal.map
RingHom
RingHom.instFunLike
algebraMap
β€”RingHom.instRingHomClass
isPrime_iff_isPrime_disjoint
comap_map_of_isPrime_disjoint
mapFrameHom_apply πŸ“–mathematicalβ€”DFunLike.coe
FrameHom
Ideal
CommSemiring.toSemiring
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
FrameHom.instFunLike
mapFrameHom
Ideal.map
RingHom
RingHom.instFunLike
algebraMap
β€”β€”
map_algebraMap_ne_top_iff_disjoint πŸ“–mathematicalβ€”Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Submonoid.instSetLike
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
algebraMap_mem_map_algebraMap_iff
mul_one
map_comap πŸ“–mathematicalβ€”Ideal.map
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
Ideal.comap
RingHom.instRingHomClass
β€”le_antisymm
RingHom.instRingHomClass
Ideal.map_le_iff_le_comap
le_rfl
exists_mk'_eq
Ideal.mul_mem_right
Submonoid.LocalizationMap.map_units
Ideal.instIsTwoSided
Ideal.mem_map_of_mem
mk'_spec
map_inf πŸ“–mathematicalβ€”Ideal.map
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
Ideal
Submodule.instMin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”le_antisymm
Ideal.map_inf_le
RingHom.instRingHomClass
mem_map_algebraMap_iff
eq
Ideal.mul_mem_right
Ideal.instIsTwoSided
mul_comm
mul_assoc
eq_mk'_iff_mul_eq
mk'_cancel
map_radical πŸ“–mathematicalβ€”Ideal.map
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
Ideal.radical
β€”LE.le.antisymm
Ideal.map_radical_le
RingHom.instRingHomClass
exists_mk'_eq
mk'_mem_map_algebraMap_iff
Submonoid.instSubmonoidClass
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Ideal.mul_mem_left
mem_map_algebraMap_iff πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.map
RingHom
RingHom.instFunLike
algebraMap
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
DFunLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
β€”Ideal.mem_sInf
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mul_one
Ideal.unit_mul_mem_iff_mem
map_units
mul_comm
Ideal.mem_map_of_mem
mk'_mem_iff πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
mk'
DFunLike.coe
RingHom
RingHom.instFunLike
algebraMap
β€”mk'_spec
mul_comm
Ideal.mul_mem_left
isUnit_iff_exists_inv
instIsDedekindFiniteMonoid
map_units
mul_one
mul_assoc
mk'_mem_map_algebraMap_iff πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.map
RingHom
RingHom.instFunLike
algebraMap
mk'
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”Ideal.unit_mul_mem_iff_mem
map_units
mk'_spec'
mem_map_algebraMap_iff
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
eq_iff_exists
mul_comm
Ideal.mul_mem_left
one_mul
of_surjective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
RingHom.comp
algebraMap
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
RingHom.ker
RingHom.instRingHomClass
Ideal.map
IsLocalization
Submonoid.map
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
β€”RingHom.instRingHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
IsUnit.map
map_units
surj
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
DFunLike.congr_arg
mk'_mem_map_algebraMap_iff
mk'_one
RingHom.comp_apply
map_sub
RingHomClass.toAddMonoidHomClass
sub_eq_zero
mul_sub
orderIsoOfPrime_apply_coe πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
Ideal.IsPrime
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Submonoid.instSetLike
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
DFunLike.coe
RelIso
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
RelIso.instFunLike
orderIsoOfPrime
Ideal.comap
RingHom
RingHom.instFunLike
algebraMap
β€”β€”
orderIsoOfPrime_symm_apply_coe πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
Ideal.IsPrime
DFunLike.coe
RelIso
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Submonoid.instSetLike
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
RelIso.instFunLike
RelIso.symm
orderIsoOfPrime
Ideal.map
RingHom
RingHom.instFunLike
algebraMap
β€”β€”
surjective_quotientMap_of_maximal_of_localization πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.comap
RingHom
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
HasQuotient.Quotient
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
DFunLike.coe
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Ideal.quotientMap
β€”RingHom.instRingHomClass
Ideal.instIsTwoSided_1
Ideal.Quotient.mk_surjective
exists_mk'_eq
Ideal.eq_top_iff_one
mk'_eq_mul_mk'_one
mk'_self
Ideal.mul_mem_right
Ideal.mem_comap
Ideal.Quotient.eq_zero_iff_mem
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
IsField.mul_inv_cancel
Ideal.Quotient.maximal_ideal_iff_isField_quotient
le_rfl
sub_eq_zero
map_sub
RingHomClass.toAddMonoidHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
Ideal.Quotient.isDomain
mul_left_cancelβ‚€
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass

Module.IsTorsionFree

Theorems

NameKindAssumesProvesValidatesDepends On
of_isLocalization πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
nonZeroDivisors
Semiring.toMonoidWithZero
Module.IsTorsionFree
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
β€”Submonoid.map_le_of_le_comap
LE.le.trans
nonZeroDivisors_le_comap_nonZeroDivisors_of_injective
IsDomain.to_noZeroDivisors
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
FaithfulSMul.algebraMap_injective
to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
IsLocalization.isDomain_of_le_nonZeroDivisors
Submonoid.le_comap_map
MonoidWithZeroHomClass.toMonoidHomClass
IsLocalization.ringHom_ext
IsLocalization.map_comp
Module.isTorsionFree_iff_algebraMap_injective
RingHom.injective_iff_ker_eq_bot
RingHom.ker_eq_bot_iff_eq_zero
IsLocalization.exists_mk'_eq
IsLocalization.map_mk'
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
injective_iff_map_eq_zero'
RingHomClass.toAddMonoidHomClass

---

← Back to Index