Documentation

Mathlib.RingTheory.Localization.Ideal

Ideals in localizations of commutative rings #

Implementation notes #

See Mathlib/RingTheory/Localization/Basic.lean for a design overview.

Tags #

localization, ring localization, commutative ring localization, characteristic predicate, commutative ring, field of fractions

theorem IsLocalization.mk'_mem_iff {R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] {x : R} {y : โ†ฅM} {I : Ideal S} :
theorem IsLocalization.mem_map_algebraMap_iff {R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] {I : Ideal R} {z : S} :
z โˆˆ Ideal.map (algebraMap R S) I โ†” โˆƒ (x : โ†ฅI ร— โ†ฅM), z * (algebraMap R S) โ†‘x.2 = (algebraMap R S) โ†‘x.1
theorem IsLocalization.mk'_mem_map_algebraMap_iff {R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (I : Ideal R) (x : R) (s : โ†ฅM) :
mk' S x s โˆˆ Ideal.map (algebraMap R S) I โ†” โˆƒ s โˆˆ M, s * x โˆˆ I
theorem IsLocalization.algebraMap_mem_map_algebraMap_iff {R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (I : Ideal R) (x : R) :
(algebraMap R S) x โˆˆ Ideal.map (algebraMap R S) I โ†” โˆƒ m โˆˆ M, m * x โˆˆ I
theorem IsLocalization.map_inf {R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (I J : Ideal R) :
Ideal.map (algebraMap R S) (I โŠ“ J) = Ideal.map (algebraMap R S) I โŠ“ Ideal.map (algebraMap R S) J
@[simp]
theorem IsLocalization.mapFrameHom_apply {R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (I : Ideal R) :
theorem IsLocalization.comap_map_of_isPrimary_disjoint {R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] {I : Ideal R} (hI : I.IsPrimary) (hM : Disjoint โ†‘M โ†‘I) :
theorem IsLocalization.comap_map_of_isPrime_disjoint {R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] {I : Ideal R} (hI : I.IsPrime) (hM : Disjoint โ†‘M โ†‘I) :

If S is the localization of R at a submonoid, the ordering of ideals of S is embedded in the ordering of ideals of R.

Equations
    Instances For

      If R is a ring, then prime ideals in the localization at M correspond to prime ideals in the original ring R that are disjoint from M. This lemma gives the particular case for an ideal and its comap, see le_rel_iso_of_prime for the more general relation isomorphism

      theorem IsLocalization.isPrime_of_isPrime_disjoint {R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (I : Ideal R) (hp : I.IsPrime) (hd : Disjoint โ†‘M โ†‘I) :

      If R is a ring, then prime ideals in the localization at M correspond to prime ideals in the original ring R that are disjoint from M. This lemma gives the particular case for an ideal and its map, see le_rel_iso_of_prime for the more general relation isomorphism, and the reverse implication

      def IsLocalization.orderIsoOfPrime {R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] :
      { p : Ideal S // p.IsPrime } โ‰ƒo { p : Ideal R // p.IsPrime โˆง Disjoint โ†‘M โ†‘p }

      If R is a ring, then prime ideals in the localization at M correspond to prime ideals in the original ring R that are disjoint from M

      Equations
        Instances For
          @[simp]
          theorem IsLocalization.orderIsoOfPrime_symm_apply_coe {R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (p : { p : Ideal R // p.IsPrime โˆง Disjoint โ†‘M โ†‘p }) :
          โ†‘((RelIso.symm (orderIsoOfPrime M S)) p) = Ideal.map (algebraMap R S) โ†‘p
          @[simp]
          theorem IsLocalization.orderIsoOfPrime_apply_coe {R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (p : { p : Ideal S // p.IsPrime }) :
          โ†‘((orderIsoOfPrime M S) p) = Ideal.comap (algebraMap R S) โ†‘p

          The prime spectrum of the localization of a ring at a submonoid M are in order-preserving bijection with subset of the prime spectrum of the ring consisting of prime ideals disjoint from M.

          Equations
            Instances For
              @[simp]
              theorem IsLocalization.coe_primeSpectrumOrderIso_symm_apply_asIdeal {R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (aโœ : { p : PrimeSpectrum R // Disjoint โ†‘M โ†‘p.asIdeal }) :
              โ†‘((RelIso.symm (primeSpectrumOrderIso M S)) aโœ).asIdeal = โ‹‚ (s : Submodule S S), โ‹‚ (_ : โ†‘(โ†‘aโœ).asIdeal โІ โ‡‘(algebraMap R S) โปยน' โ†‘s), โ†‘s
              @[simp]
              theorem IsLocalization.coe_primeSpectrumOrderIso_apply_coe_asIdeal {R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (aโœ : PrimeSpectrum S) :
              โ†‘(โ†‘((primeSpectrumOrderIso M S) aโœ)).asIdeal = โ‡‘(algebraMap R S) โปยน' โ†‘aโœ.asIdeal

              quotientMap applied to maximal ideals of a localization is surjective. The quotient by a maximal ideal is a field, so inverses to elements already exist, and the localization necessarily maps the equivalence class of the inverse in the localization

              theorem Module.IsTorsionFree.of_isLocalization (R : Type u_1) [CommRing R] (S : Type u_2) [CommRing S] [Algebra R S] [IsDomain R] [IsDomain S] {Rโ‚š : Type u_3} {Sโ‚š : Type u_4} [CommRing Rโ‚š] [IsDomain Rโ‚š] [CommRing Sโ‚š] [Algebra R Rโ‚š] [Algebra R Sโ‚š] [Algebra S Sโ‚š] [Algebra Rโ‚š Sโ‚š] [IsScalarTower R S Sโ‚š] [IsScalarTower R Rโ‚š Sโ‚š] {M : Submonoid R} (hM : M โ‰ค nonZeroDivisors R) [IsLocalization M Rโ‚š] [IsLocalization (Algebra.algebraMapSubmonoid S M) Sโ‚š] [IsTorsionFree R S] :
              IsTorsionFree Rโ‚š Sโ‚š
              theorem IsLocalization.of_surjective {R : Type u_1} [CommRing R] (M : Submonoid R) (S : Type u_2) [CommRing S] [Algebra R S] [IsLocalization M S] {R' : Type u_3} {S' : Type u_4} [CommRing R'] [CommRing S'] [Algebra R' S'] (f : R โ†’+* R') (hf : Function.Surjective โ‡‘f) (g : S โ†’+* S') (hg : Function.Surjective โ‡‘g) (H : g.comp (algebraMap R S) = (algebraMap R' S').comp f) (H' : RingHom.ker g โ‰ค Ideal.map (algebraMap R S) (RingHom.ker f)) :