Documentation Verification Report

NumDen

πŸ“ Source: Mathlib/RingTheory/Localization/NumDen.lean

Statistics

MetricCount
Definitionsden, num
2
Theoremsassociated_den_num_inv, associated_num_den_inv, eq_zero_of_num_eq_zero, exists_reduced_fraction, isInteger_of_isUnit_den, isUnit_den_iff, isUnit_den_zero, mk'_num_den, mk'_num_den', num_den_reduced, num_den_unique, num_eq_zero, num_mul_den_eq_num_iff_eq, num_mul_den_eq_num_iff_eq', num_mul_den_eq_num_mul_den_iff_eq, num_zero
16
Total18

IsFractionRing

Definitions

NameCategoryTheorems
den πŸ“–CompOp
15 mathmath: Rat.isFractionRingDen, num_isRoot_scaleRoots_of_aeval_eq_zero, Rat.associated_num_den, mk'_num_den', mk'_num_den, den_dvd_of_is_root, associated_num_den_inv, num_mul_den_eq_num_mul_den_iff_eq, num_mul_den_eq_num_iff_eq, num_den_unique, num_den_reduced, associated_den_num_inv, num_mul_den_eq_num_iff_eq', isUnit_den_zero, isUnit_den_iff
num πŸ“–CompOp
15 mathmath: num_isRoot_scaleRoots_of_aeval_eq_zero, Rat.associated_num_den, num_eq_zero, mk'_num_den', mk'_num_den, associated_num_den_inv, num_dvd_of_is_root, Rat.isFractionRingNum, num_mul_den_eq_num_mul_den_iff_eq, num_zero, num_mul_den_eq_num_iff_eq, num_den_unique, num_den_reduced, associated_den_num_inv, num_mul_den_eq_num_iff_eq'

Theorems

NameKindAssumesProvesValidatesDepends On
associated_den_num_inv πŸ“–mathematicalβ€”Associated
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
den
num
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
β€”associated_of_dvd_dvd
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
IsRelPrime.dvd_of_dvd_mul_right
instDecompositionMonoidOfNonemptyGCDMonoid
instNonemptyGCDMonoidOfNormalizedGCDMonoid
instNonemptyNormalizedGCDMonoidOfUniqueFactorizationMonoid
IsRelPrime.symm
num_den_reduced
dvd_of_mul_left_dvd
dvd_of_eq
FaithfulSMul.algebraMap_injective
instFaithfulSMul
eq_of_div_eq_one
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
mul_div_mul_comm
mk'_num_den'
inv_mul_cancelβ‚€
mul_inv_cancelβ‚€
associated_num_den_inv πŸ“–mathematicalβ€”Associated
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
num
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
den
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
β€”Associated.symm
associated_den_num_inv
inv_ne_zero
inv_inv
eq_zero_of_num_eq_zero πŸ“–mathematicalnum
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRingβ€”num_mul_den_eq_num_iff_eq'
MulZeroClass.zero_mul
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
exists_reduced_fraction πŸ“–mathematicalβ€”IsRelPrime
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
IsLocalization.mk'
Semifield.toCommSemiring
Field.toSemifield
β€”IsLocalization.exists_integer_multiple
UniqueFactorizationMonoid.exists_reduced_factors'
mem_nonZeroDivisors_iff_ne_zero
IsDomain.to_noZeroDivisors
IsDomain.toNontrivial
mul_mem_nonZeroDivisors
mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
to_map_ne_zero_of_mem_nonZeroDivisors
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
Algebra.smul_def
mul_assoc
IsLocalization.mk'_spec'
isInteger_of_isUnit_den πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
den
IsLocalization.IsInteger
Semifield.toCommSemiring
Field.toSemifield
β€”to_map_ne_zero_of_mem_nonZeroDivisors
IsDomain.toNontrivial
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_units_inv
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
mul_assoc
mul_inv_cancelβ‚€
one_mul
IsLocalization.mk'_spec'
mk'_num_den
isUnit_den_iff πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
den
IsLocalization.IsInteger
Semifield.toCommSemiring
Field.toSemifield
β€”isInteger_of_isUnit_den
IsRelPrime.isUnit_of_dvd
IsRelPrime.symm
num_den_reduced
FaithfulSMul.algebraMap_injective
instFaithfulSMul
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
mul_comm
div_eq_iff
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
nonZeroDivisors.coe_ne_zero
IsDomain.toNontrivial
mk'_num_den'
isUnit_den_zero πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
den
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”β€”
mk'_num_den πŸ“–mathematicalβ€”IsLocalization.mk'
CommRing.toCommSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
num
den
β€”exists_reduced_fraction
mk'_num_den' πŸ“–mathematicalβ€”DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
num
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
den
β€”mk'_eq_div
mk'_num_den
num_den_reduced πŸ“–mathematicalβ€”IsRelPrime
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
num
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
den
β€”exists_reduced_fraction
num_den_unique πŸ“–mathematicalIsRelPrime
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
IsLocalization.mk'
Semifield.toCommSemiring
Field.toSemifield
Associated
num
den
β€”associated_of_dvd_dvd
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
IsRelPrime.dvd_of_dvd_mul_right
instDecompositionMonoidOfNonemptyGCDMonoid
instNonemptyGCDMonoidOfNormalizedGCDMonoid
instNonemptyNormalizedGCDMonoidOfUniqueFactorizationMonoid
num_den_reduced
dvd_mul_right
FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
FaithfulSMul.to_isTorsionFree
instFaithfulSMul
IsDomain.toNontrivial
instIsDomain
IsLocalization.mk'_eq_iff_eq'
mk'_num_den
IsRelPrime.dvd_of_dvd_mul_left
IsRelPrime.symm
dvd_mul_left
num_eq_zero πŸ“–mathematicalβ€”num
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”eq_zero_of_num_eq_zero
num_zero
num_mul_den_eq_num_iff_eq πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
den
num
β€”mk'_num_den
IsLocalization.eq_mk'_iff_mul_eq
num_mul_den_eq_num_iff_eq' πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
den
num
β€”mk'_num_den
IsLocalization.eq_mk'_iff_mul_eq
num_mul_den_eq_num_mul_den_iff_eq πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
num
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
den
β€”mk'_num_den
IsLocalization.mk'_eq_of_eq'
num_zero πŸ“–mathematicalβ€”num
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”mk'_num_den'
instFaithfulSMul
IsDomain.toNontrivial

---

← Back to Index