Documentation

Mathlib.RingTheory.Localization.NumDen

Numerator and denominator in a localization #

Implementation notes #

See Mathlib/RingTheory/Localization/Basic.lean for a design overview.

Tags #

localization, ring localization, commutative ring localization, characteristic predicate, commutative ring, field of fractions

theorem IsFractionRing.exists_reduced_fraction (A : Type u_1) [CommRing A] [IsDomain A] [UniqueFactorizationMonoid A] {K : Type u_2} [Field K] [Algebra A K] [IsFractionRing A K] (x : K) :
โˆƒ (a : A) (b : โ†ฅ(nonZeroDivisors A)), IsRelPrime a โ†‘b โˆง IsLocalization.mk' K a b = x
noncomputable def IsFractionRing.num (A : Type u_1) [CommRing A] [IsDomain A] [UniqueFactorizationMonoid A] {K : Type u_2} [Field K] [Algebra A K] [IsFractionRing A K] (x : K) :
A

f.num x is the numerator of x : f.codomain as a reduced fraction.

Equations
    Instances For
      noncomputable def IsFractionRing.den (A : Type u_1) [CommRing A] [IsDomain A] [UniqueFactorizationMonoid A] {K : Type u_2} [Field K] [Algebra A K] [IsFractionRing A K] (x : K) :
      โ†ฅ(nonZeroDivisors A)

      f.den x is the denominator of x : f.codomain as a reduced fraction.

      Equations
        Instances For
          theorem IsFractionRing.num_den_reduced (A : Type u_1) [CommRing A] [IsDomain A] [UniqueFactorizationMonoid A] {K : Type u_2} [Field K] [Algebra A K] [IsFractionRing A K] (x : K) :
          IsRelPrime (num A x) โ†‘(den A x)
          @[simp]
          theorem IsFractionRing.mk'_num_den' (A : Type u_1) [CommRing A] [IsDomain A] [UniqueFactorizationMonoid A] {K : Type u_2} [Field K] [Algebra A K] [IsFractionRing A K] (x : K) :
          (algebraMap A K) (num A x) / (algebraMap A K) โ†‘(den A x) = x
          theorem IsFractionRing.num_mul_den_eq_num_iff_eq {A : Type u_1} [CommRing A] [IsDomain A] [UniqueFactorizationMonoid A] {K : Type u_2} [Field K] [Algebra A K] [IsFractionRing A K] {x y : K} :
          x * (algebraMap A K) โ†‘(den A y) = (algebraMap A K) (num A y) โ†” x = y
          theorem IsFractionRing.num_mul_den_eq_num_iff_eq' {A : Type u_1} [CommRing A] [IsDomain A] [UniqueFactorizationMonoid A] {K : Type u_2} [Field K] [Algebra A K] [IsFractionRing A K] {x y : K} :
          y * (algebraMap A K) โ†‘(den A x) = (algebraMap A K) (num A x) โ†” x = y
          theorem IsFractionRing.num_mul_den_eq_num_mul_den_iff_eq {A : Type u_1} [CommRing A] [IsDomain A] [UniqueFactorizationMonoid A] {K : Type u_2} [Field K] [Algebra A K] [IsFractionRing A K] {x y : K} :
          num A y * โ†‘(den A x) = num A x * โ†‘(den A y) โ†” x = y
          theorem IsFractionRing.eq_zero_of_num_eq_zero {A : Type u_1} [CommRing A] [IsDomain A] [UniqueFactorizationMonoid A] {K : Type u_2} [Field K] [Algebra A K] [IsFractionRing A K] {x : K} (h : num A x = 0) :
          x = 0
          @[simp]
          theorem IsFractionRing.num_eq_zero {A : Type u_1} [CommRing A] [IsDomain A] [UniqueFactorizationMonoid A] {K : Type u_2} [Field K] [Algebra A K] [IsFractionRing A K] (x : K) :
          num A x = 0 โ†” x = 0
          theorem IsFractionRing.num_den_unique (A : Type u_1) [CommRing A] [IsDomain A] [UniqueFactorizationMonoid A] {K : Type u_2} [Field K] [Algebra A K] [IsFractionRing A K] (x : K) (n : A) (d : โ†ฅ(nonZeroDivisors A)) (pr : IsRelPrime n โ†‘d) (h : IsLocalization.mk' K n d = x) :
          Associated (num A x) n โˆง Associated โ†‘(den A x) โ†‘d