Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/NonUnitalSubsemiring/Basic.lean

Statistics

MetricCount
Definitionssrange, srangeRestrict, center, instNonUnitalCommSemiring, centerCongr, centerToMulOpposite, centralizer, closure, closureNonUnitalCommSemiringOfComm, comap, decidableMemCenter, equivMapOfInjective, gi, instCompleteLattice, instInfSet, map, prod, prodEquiv, topEquiv, nonUnitalSubsemiringCongr, nonUnitalSubsemiringMap, sofLeftInverse', nonUnitalSubsemiringClosure
23
Theoremscoe_srange, coe_srangeRestrict, eqOn_sclosure, eq_of_eqOn_sdense, eq_of_eqOn_stop, finite_srange, map_sclosure, map_srange, mem_srange, mem_srange_self, sclosure_preimage_le, srangeRestrict_surjective, srange_eq_map, srange_eq_top_iff_surjective, srange_eq_top_of_surjective, centerCongr_apply_coe, centerCongr_symm_apply_coe, centerToMulOpposite_apply_coe, centerToMulOpposite_symm_apply_coe, center_eq_top, center_le_centralizer, center_toSubsemigroup, centralizer_eq_top_iff_subset, centralizer_le, centralizer_toSubsemigroup, centralizer_univ, closure_addSubmonoid_closure, closure_empty, closure_eq, closure_eq_of_le, closure_iUnion, closure_induction, closure_inductionβ‚‚, closure_le, closure_le_centralizer_centralizer, closure_mono, closure_sUnion, closure_subsemigroup_closure, closure_union, closure_univ, coe_center, coe_centralizer, coe_closure_eq, coe_comap, coe_equivMapOfInjective_apply, coe_iInf, coe_iSup_of_directed, coe_map, coe_prod, coe_sInf, coe_sSup_of_directedOn, comap_comap, comap_equiv_eq_map_symm, comap_iInf, comap_inf, comap_top, eq_top_iff', gc_map_comap, map_bot, map_equiv_eq_comap_symm, map_iInf, map_iSup, map_id, map_inf, map_le_iff_le_comap, map_map, map_sup, mem_center_iff, mem_centralizer_iff, mem_closure, mem_closure_iff, mem_closure_of_mem, mem_comap, mem_iInf, mem_iSup_of_directed, mem_map, mem_map_equiv, mem_prod, mem_sInf, mem_sSup_of_directedOn, notMem_of_notMem_closure, prod_mono, prod_mono_left, prod_mono_right, prod_top, range_fst, range_snd, sInf_toAddSubmonoid, sInf_toSubsemigroup, srange_subtype, subset_closure, toAddSubmonoid_mono, toAddSubmonoid_strictMono, toSubsemigroup_mono, toSubsemigroup_strictMono, topEquiv_apply, topEquiv_symm_apply_coe, top_prod, top_prod_top, nonUnitalSubsemiringMap_apply_coe, nonUnitalSubsemiringMap_symm_apply_coe, sofLeftInverse'_apply, sofLeftInverse'_symm_apply, mem_center_iff_addMonoidHom, nonUnitalSubsemiringClosure_coe, nonUnitalSubsemiringClosure_eq_closure, nonUnitalSubsemiringClosure_toAddSubmonoid
107
Total130

NonUnitalRingHom

Definitions

NameCategoryTheorems
srange πŸ“–CompOp
17 mathmath: NonUnitalSubsemiring.srange_subtype, srange_eq_map, mem_srange, mem_srange_self, RingEquiv.sofLeftInverse'_apply, NonUnitalSubring.range_snd, srangeRestrict_surjective, srange_eq_top_iff_surjective, NonUnitalSubsemiring.range_fst, map_srange, srange_eq_top_of_surjective, RingEquiv.sofLeftInverse'_symm_apply, finite_srange, coe_srange, coe_srangeRestrict, NonUnitalSubsemiring.range_snd, NonUnitalSubring.range_fst
srangeRestrict πŸ“–CompOp
2 mathmath: srangeRestrict_surjective, coe_srangeRestrict

Theorems

NameKindAssumesProvesValidatesDepends On
coe_srange πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubsemiring
NonUnitalSubsemiring.instSetLike
srange
Set.range
DFunLike.coe
β€”β€”
coe_srangeRestrict πŸ“–mathematicalβ€”NonUnitalSubsemiring
SetLike.instMembership
NonUnitalSubsemiring.instSetLike
srange
DFunLike.coe
NonUnitalRingHom
NonUnitalSubsemiringClass.toNonUnitalNonAssocSemiring
NonUnitalSubsemiring.instNonUnitalSubsemiringClass
instFunLike
srangeRestrict
β€”NonUnitalSubsemiring.instNonUnitalSubsemiringClass
eqOn_sclosure πŸ“–mathematicalSet.EqOn
DFunLike.coe
SetLike.coe
NonUnitalSubsemiring
NonUnitalSubsemiring.instSetLike
NonUnitalSubsemiring.closure
β€”NonUnitalSubsemiring.closure_le
eq_of_eqOn_sdense πŸ“–β€”NonUnitalSubsemiring.closure
Top.top
NonUnitalSubsemiring
NonUnitalSubsemiring.instTop
Set.EqOn
DFunLike.coe
β€”β€”eq_of_eqOn_stop
eqOn_sclosure
eq_of_eqOn_stop πŸ“–β€”Set.EqOn
DFunLike.coe
SetLike.coe
NonUnitalSubsemiring
NonUnitalSubsemiring.instSetLike
Top.top
NonUnitalSubsemiring.instTop
β€”β€”DFunLike.ext
finite_srange πŸ“–mathematicalβ€”Finite
NonUnitalSubsemiring
SetLike.instMembership
NonUnitalSubsemiring.instSetLike
srange
β€”Set.Finite.to_subtype
Set.finite_range
map_sclosure πŸ“–mathematicalβ€”NonUnitalSubsemiring.map
NonUnitalSubsemiring.closure
Set.image
DFunLike.coe
β€”GaloisConnection.l_comm_of_u_comm
Set.image_preimage
NonUnitalSubsemiring.gc_map_comap
GaloisInsertion.gc
map_srange πŸ“–mathematicalβ€”NonUnitalSubsemiring.map
NonUnitalRingHom
instFunLike
instNonUnitalRingHomClass
srange
comp
β€”instNonUnitalRingHomClass
NonUnitalSubsemiring.map.congr_simp
srange_eq_map
NonUnitalSubsemiring.map_map
mem_srange πŸ“–mathematicalβ€”NonUnitalSubsemiring
SetLike.instMembership
NonUnitalSubsemiring.instSetLike
srange
DFunLike.coe
β€”β€”
mem_srange_self πŸ“–mathematicalβ€”NonUnitalSubsemiring
SetLike.instMembership
NonUnitalSubsemiring.instSetLike
srange
DFunLike.coe
β€”mem_srange
sclosure_preimage_le πŸ“–mathematicalβ€”NonUnitalSubsemiring
Preorder.toLE
PartialOrder.toPreorder
NonUnitalSubsemiring.instPartialOrder
NonUnitalSubsemiring.closure
Set.preimage
DFunLike.coe
NonUnitalSubsemiring.comap
β€”NonUnitalSubsemiring.closure_le
SetLike.mem_coe
NonUnitalSubsemiring.mem_comap
NonUnitalSubsemiring.subset_closure
srangeRestrict_surjective πŸ“–mathematicalβ€”NonUnitalSubsemiring
SetLike.instMembership
NonUnitalSubsemiring.instSetLike
srange
DFunLike.coe
NonUnitalRingHom
NonUnitalSubsemiringClass.toNonUnitalNonAssocSemiring
NonUnitalSubsemiring.instNonUnitalSubsemiringClass
instFunLike
srangeRestrict
β€”NonUnitalSubsemiring.instNonUnitalSubsemiringClass
mem_srange
srange_eq_map πŸ“–mathematicalβ€”srange
NonUnitalSubsemiring.map
Top.top
NonUnitalSubsemiring
NonUnitalSubsemiring.instTop
β€”NonUnitalSubsemiring.ext
srange_eq_top_iff_surjective πŸ“–mathematicalβ€”srange
Top.top
NonUnitalSubsemiring
NonUnitalSubsemiring.instTop
DFunLike.coe
β€”SetLike.ext'_iff
coe_srange
NonUnitalSubsemiring.coe_top
Set.range_eq_univ
srange_eq_top_of_surjective πŸ“–mathematicalDFunLike.coesrange
Top.top
NonUnitalSubsemiring
NonUnitalSubsemiring.instTop
β€”srange_eq_top_iff_surjective

NonUnitalSubsemiring

Definitions

NameCategoryTheorems
center πŸ“–CompOp
21 mathmath: CentroidHom.star_centerToCentroidCenter, Subalgebra.coe_center, centerCongr_symm_apply_coe, centralizer_univ, centerToMulOpposite_symm_apply_coe, center_eq_top, coe_center, Subsemiring.center_toSubmonoid, NonUnitalNonAssocCommSemiring.mem_center_iff, NonUnitalSubring.center_toNonUnitalSubsemiring, NonUnitalSubalgebra.center_toNonUnitalSubsemiring, mem_center_iff, NonUnitalNonAssocSemiring.mem_center_iff, centralizer_eq_top_iff_subset, centerToMulOpposite_apply_coe, CentroidHom.centerToCentroidCenter_apply, center_le_centralizer, CentroidHom.centerToCentroid_apply, center_toSubsemigroup, centerCongr_apply_coe, Subsemiring.coe_center
centerCongr πŸ“–CompOp
2 mathmath: centerCongr_symm_apply_coe, centerCongr_apply_coe
centerToMulOpposite πŸ“–CompOp
2 mathmath: centerToMulOpposite_symm_apply_coe, centerToMulOpposite_apply_coe
centralizer πŸ“–CompOp
8 mathmath: centralizer_univ, closure_le_centralizer_centralizer, coe_centralizer, centralizer_eq_top_iff_subset, centralizer_toSubsemigroup, center_le_centralizer, centralizer_le, mem_centralizer_iff
closure πŸ“–CompOp
23 mathmath: mem_closure_of_mem, subset_closure, closure_union, closure_empty, closure_addSubmonoid_closure, closure_le_centralizer_centralizer, closure_mono, NonUnitalRingHom.map_sclosure, NonUnitalRingHom.sclosure_preimage_le, closure_subsemigroup_closure, closure_univ, closure_sUnion, closure_iUnion, closure_le, mem_closure, NonUnitalAlgebra.adjoin_toSubmodule, closure_isSquare, mem_closure_iff, Submonoid.subsemiringClosure_toNonUnitalSubsemiring, coe_closure_eq, Subsemigroup.nonUnitalSubsemiringClosure_eq_closure, closure_eq, NonUnitalRingHom.eqOn_sclosure
closureNonUnitalCommSemiringOfComm πŸ“–CompOpβ€”
comap πŸ“–CompOp
13 mathmath: top_prod, comap_iInf, gc_map_comap, map_equiv_eq_comap_symm, NonUnitalRingHom.sclosure_preimage_le, comap_comap, map_le_iff_le_comap, comap_equiv_eq_map_symm, comap_inf, comap_top, mem_comap, prod_top, coe_comap
decidableMemCenter πŸ“–CompOpβ€”
equivMapOfInjective πŸ“–CompOp
1 mathmath: coe_equivMapOfInjective_apply
gi πŸ“–CompOpβ€”
instCompleteLattice πŸ“–CompOp
9 mathmath: mem_iSup_of_directed, closure_union, coe_iSup_of_directed, map_iSup, closure_sUnion, closure_iUnion, map_sup, coe_sSup_of_directedOn, mem_sSup_of_directedOn
instInfSet πŸ“–CompOp
9 mathmath: NonUnitalAlgebra.sInf_toNonUnitalSubsemiring, mem_iInf, comap_iInf, map_iInf, mem_sInf, sInf_toAddSubmonoid, coe_iInf, sInf_toSubsemigroup, coe_sInf
map πŸ“–CompOp
21 mathmath: NonUnitalRingHom.srange_eq_map, coe_map, coe_equivMapOfInjective_apply, mem_map_equiv, map_map, map_id, gc_map_comap, map_iInf, map_equiv_eq_comap_symm, NonUnitalRingHom.map_sclosure, map_iSup, NonUnitalSubalgebra.map_toNonUnitalSubsemiring, map_le_iff_le_comap, mem_map, comap_equiv_eq_map_symm, NonUnitalRingHom.map_srange, RingEquiv.nonUnitalSubsemiringMap_symm_apply_coe, map_sup, map_inf, map_bot, RingEquiv.nonUnitalSubsemiringMap_apply_coe
prod πŸ“–CompOp
8 mathmath: top_prod, prod_mono, prod_mono_left, top_prod_top, coe_prod, prod_top, prod_mono_right, mem_prod
prodEquiv πŸ“–CompOpβ€”
topEquiv πŸ“–CompOp
2 mathmath: topEquiv_symm_apply_coe, topEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
centerCongr_apply_coe πŸ“–mathematicalβ€”Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SetLike.instMembership
Subsemigroup.instSetLike
Subsemigroup.center
DFunLike.coe
RingEquiv
NonUnitalSubsemiring
instSetLike
center
NonUnitalSemiring.toNonUnitalNonAssocSemiring
NonUnitalCommSemiring.toNonUnitalSemiring
center.instNonUnitalCommSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
centerCongr
β€”β€”
centerCongr_symm_apply_coe πŸ“–mathematicalβ€”Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SetLike.instMembership
Subsemigroup.instSetLike
Subsemigroup.center
DFunLike.coe
RingEquiv
NonUnitalSubsemiring
instSetLike
center
NonUnitalSemiring.toNonUnitalNonAssocSemiring
NonUnitalCommSemiring.toNonUnitalSemiring
center.instNonUnitalCommSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
centerCongr
MulEquiv
MulEquiv.instEquivLike
MulEquiv.symm
MulEquivClass.toMulEquiv
β€”β€”
centerToMulOpposite_apply_coe πŸ“–mathematicalβ€”MulOpposite
Subsemigroup
MulOpposite.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SetLike.instMembership
Subsemigroup.instSetLike
Subsemigroup.center
DFunLike.coe
RingEquiv
NonUnitalSubsemiring
instSetLike
center
MulOpposite.instNonUnitalNonAssocSemiring
NonUnitalSemiring.toNonUnitalNonAssocSemiring
NonUnitalCommSemiring.toNonUnitalSemiring
center.instNonUnitalCommSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
centerToMulOpposite
MulOpposite.op
β€”β€”
centerToMulOpposite_symm_apply_coe πŸ“–mathematicalβ€”Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SetLike.instMembership
Subsemigroup.instSetLike
Subsemigroup.center
DFunLike.coe
RingEquiv
MulOpposite
NonUnitalSubsemiring
MulOpposite.instNonUnitalNonAssocSemiring
instSetLike
center
NonUnitalSemiring.toNonUnitalNonAssocSemiring
NonUnitalCommSemiring.toNonUnitalSemiring
center.instNonUnitalCommSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
centerToMulOpposite
MulOpposite.unop
MulOpposite.instMul
β€”β€”
center_eq_top πŸ“–mathematicalβ€”center
NonUnitalSemiring.toNonUnitalNonAssocSemiring
NonUnitalCommSemiring.toNonUnitalSemiring
Top.top
NonUnitalSubsemiring
instTop
β€”SetLike.coe_injective
Set.center_eq_univ
center_le_centralizer πŸ“–mathematicalβ€”NonUnitalSubsemiring
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
center
centralizer
β€”Set.center_subset_centralizer
center_toSubsemigroup πŸ“–mathematicalβ€”toSubsemigroup
center
Subsemigroup.center
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
centralizer_eq_top_iff_subset πŸ“–mathematicalβ€”centralizer
Top.top
NonUnitalSubsemiring
NonUnitalSemiring.toNonUnitalNonAssocSemiring
instTop
Set
Set.instHasSubset
SetLike.coe
instSetLike
center
β€”SetLike.ext'_iff
Set.centralizer_eq_top_iff_subset
centralizer_le πŸ“–mathematicalSet
Set.instHasSubset
NonUnitalSubsemiring
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
centralizer
β€”Set.centralizer_subset
centralizer_toSubsemigroup πŸ“–mathematicalβ€”toSubsemigroup
NonUnitalSemiring.toNonUnitalNonAssocSemiring
centralizer
Subsemigroup.centralizer
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
β€”β€”
centralizer_univ πŸ“–mathematicalβ€”centralizer
Set.univ
center
NonUnitalSemiring.toNonUnitalNonAssocSemiring
β€”SetLike.ext'
Set.centralizer_univ
closure_addSubmonoid_closure πŸ“–mathematicalβ€”closure
SetLike.coe
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddSubmonoid.instSetLike
AddSubmonoid.closure
β€”ext
AddSubmonoid.mem_closure
mem_closure_iff
Subsemigroup.mem_closure
closure_mono
AddSubmonoid.subset_closure
closure_empty πŸ“–mathematicalβ€”closure
Set
Set.instEmptyCollection
Bot.bot
NonUnitalSubsemiring
instBot
β€”GaloisConnection.l_bot
GaloisInsertion.gc
closure_eq πŸ“–mathematicalβ€”closure
SetLike.coe
NonUnitalSubsemiring
instSetLike
β€”GaloisInsertion.l_u_eq
closure_eq_of_le πŸ“–β€”Set
Set.instHasSubset
SetLike.coe
NonUnitalSubsemiring
instSetLike
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
β€”β€”le_antisymm
closure_le
closure_iUnion πŸ“–mathematicalβ€”closure
Set.iUnion
iSup
NonUnitalSubsemiring
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”GaloisConnection.l_iSup
GaloisInsertion.gc
closure_induction πŸ“–β€”subset_closure
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
ZeroMemClass.zero_mem
NonUnitalSubsemiring
instSetLike
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSubsemiringClass.toAddSubmonoidClass
instNonUnitalSubsemiringClass
closure
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
Distrib.toMul
MulMemClass.mul_mem
NonUnitalSubsemiringClass.mulMemClass
SetLike.instMembership
β€”β€”subset_closure
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
NonUnitalSubsemiringClass.toAddSubmonoidClass
instNonUnitalSubsemiringClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
MulMemClass.mul_mem
NonUnitalSubsemiringClass.mulMemClass
closure_le
closure_inductionβ‚‚ πŸ“–β€”subset_closure
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
ZeroMemClass.zero_mem
NonUnitalSubsemiring
instSetLike
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSubsemiringClass.toAddSubmonoidClass
instNonUnitalSubsemiringClass
closure
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
Distrib.toMul
MulMemClass.mul_mem
NonUnitalSubsemiringClass.mulMemClass
SetLike.instMembership
β€”β€”subset_closure
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
NonUnitalSubsemiringClass.toAddSubmonoidClass
instNonUnitalSubsemiringClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
MulMemClass.mul_mem
NonUnitalSubsemiringClass.mulMemClass
closure_induction
closure_le πŸ“–mathematicalβ€”NonUnitalSubsemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”Set.Subset.trans
subset_closure
sInf_le
closure_le_centralizer_centralizer πŸ“–mathematicalβ€”NonUnitalSubsemiring
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
centralizer
SetLike.coe
instSetLike
β€”closure_le
Set.subset_centralizer_centralizer
closure_mono πŸ“–mathematicalSet
Set.instHasSubset
NonUnitalSubsemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
β€”closure_le
Set.Subset.trans
subset_closure
closure_sUnion πŸ“–mathematicalβ€”closure
Set.sUnion
iSup
NonUnitalSubsemiring
Set
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
Set.instMembership
β€”GaloisConnection.l_sSup
GaloisInsertion.gc
closure_subsemigroup_closure πŸ“–mathematicalβ€”closure
SetLike.coe
Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Subsemigroup.instSetLike
Subsemigroup.closure
β€”le_antisymm
closure_le
Subsemigroup.mem_closure
subset_closure
closure_mono
Subsemigroup.subset_closure
closure_union πŸ“–mathematicalβ€”closure
Set
Set.instUnion
NonUnitalSubsemiring
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
β€”GaloisConnection.l_sup
GaloisInsertion.gc
closure_univ πŸ“–mathematicalβ€”closure
Set.univ
Top.top
NonUnitalSubsemiring
instTop
β€”closure_eq
coe_top
coe_center πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubsemiring
instSetLike
center
Set.center
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
coe_centralizer πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubsemiring
NonUnitalSemiring.toNonUnitalNonAssocSemiring
instSetLike
centralizer
Set.centralizer
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
coe_closure_eq πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubsemiring
instSetLike
closure
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddSubmonoid.instSetLike
AddSubmonoid.closure
Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Subsemigroup.instSetLike
Subsemigroup.closure
β€”Subsemigroup.nonUnitalSubsemiringClosure_eq_closure
closure_subsemigroup_closure
coe_comap πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubsemiring
instSetLike
comap
Set.preimage
DFunLike.coe
β€”β€”
coe_equivMapOfInjective_apply πŸ“–mathematicalDFunLike.coeNonUnitalSubsemiring
SetLike.instMembership
instSetLike
map
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalSubsemiringClass.toNonUnitalNonAssocSemiring
instNonUnitalSubsemiringClass
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
equivMapOfInjective
β€”instNonUnitalSubsemiringClass
coe_iInf πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubsemiring
instSetLike
iInf
instInfSet
Set.iInter
β€”Set.biInter_range
coe_iSup_of_directed πŸ“–mathematicalDirected
NonUnitalSubsemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.coe
instSetLike
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
Set.iUnion
β€”Set.ext
mem_iSup_of_directed
coe_map πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubsemiring
instSetLike
map
Set.image
DFunLike.coe
β€”β€”
coe_prod πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubsemiring
Prod.instNonUnitalNonAssocSemiring
instSetLike
prod
SProd.sprod
Set
Set.instSProd
β€”β€”
coe_sInf πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubsemiring
instSetLike
InfSet.sInf
instInfSet
Set.iInter
Set
Set.instMembership
β€”β€”
coe_sSup_of_directedOn πŸ“–mathematicalSet.Nonempty
NonUnitalSubsemiring
DirectedOn
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.coe
instSetLike
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
Set.iUnion
Set
Set.instMembership
β€”Set.ext
mem_sSup_of_directedOn
comap_comap πŸ“–mathematicalβ€”comap
NonUnitalRingHom
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHom.comp
NonUnitalRingHomClass.toNonUnitalRingHom
β€”β€”
comap_equiv_eq_map_symm πŸ“–mathematicalβ€”comap
NonUnitalRingHom
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHomClass.toNonUnitalRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toNonUnitalRingHomClass
RingEquiv.instRingEquivClass
map
RingEquiv.symm
β€”NonUnitalRingHom.instNonUnitalRingHomClass
RingEquivClass.toNonUnitalRingHomClass
RingEquiv.instRingEquivClass
map_equiv_eq_comap_symm
comap_iInf πŸ“–mathematicalβ€”comap
iInf
NonUnitalSubsemiring
instInfSet
β€”GaloisConnection.u_iInf
gc_map_comap
comap_inf πŸ“–mathematicalβ€”comap
NonUnitalSubsemiring
instMin
β€”GaloisConnection.u_inf
gc_map_comap
comap_top πŸ“–mathematicalβ€”comap
Top.top
NonUnitalSubsemiring
instTop
β€”GaloisConnection.u_top
gc_map_comap
eq_top_iff' πŸ“–mathematicalβ€”Top.top
NonUnitalSubsemiring
instTop
SetLike.instMembership
instSetLike
β€”eq_top_iff
mem_top
gc_map_comap πŸ“–mathematicalβ€”GaloisConnection
NonUnitalSubsemiring
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”map_le_iff_le_comap
map_bot πŸ“–mathematicalβ€”map
Bot.bot
NonUnitalSubsemiring
instBot
β€”GaloisConnection.l_bot
gc_map_comap
map_equiv_eq_comap_symm πŸ“–mathematicalβ€”map
NonUnitalRingHom
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHomClass.toNonUnitalRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toNonUnitalRingHomClass
RingEquiv.instRingEquivClass
comap
RingEquiv.symm
β€”SetLike.coe_injective
NonUnitalRingHom.instNonUnitalRingHomClass
RingEquivClass.toNonUnitalRingHomClass
RingEquiv.instRingEquivClass
Equiv.image_eq_preimage_symm
map_iInf πŸ“–mathematicalDFunLike.coemap
iInf
NonUnitalSubsemiring
instInfSet
β€”SetLike.coe_injective
coe_iInf
Set.InjOn.image_iInter_eq
Set.injOn_of_injective
map_iSup πŸ“–mathematicalβ€”map
iSup
NonUnitalSubsemiring
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”GaloisConnection.l_iSup
gc_map_comap
map_id πŸ“–mathematicalβ€”map
NonUnitalRingHom
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHom.id
β€”SetLike.coe_injective
NonUnitalRingHom.instNonUnitalRingHomClass
Set.image_id
map_inf πŸ“–mathematicalDFunLike.coemap
NonUnitalSubsemiring
instMin
β€”SetLike.coe_injective
Set.image_inter
map_le_iff_le_comap πŸ“–mathematicalβ€”NonUnitalSubsemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”Set.image_subset_iff
map_map πŸ“–mathematicalβ€”map
NonUnitalRingHom
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHomClass.toNonUnitalRingHom
NonUnitalRingHom.comp
β€”SetLike.coe_injective
NonUnitalRingHom.instNonUnitalRingHomClass
Set.image_image
map_sup πŸ“–mathematicalβ€”map
NonUnitalSubsemiring
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
β€”GaloisConnection.l_sup
gc_map_comap
mem_center_iff πŸ“–mathematicalβ€”NonUnitalSubsemiring
NonUnitalSemiring.toNonUnitalNonAssocSemiring
SetLike.instMembership
instSetLike
center
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”Semigroup.mem_center_iff
mem_centralizer_iff πŸ“–mathematicalβ€”NonUnitalSubsemiring
NonUnitalSemiring.toNonUnitalNonAssocSemiring
SetLike.instMembership
instSetLike
centralizer
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
mem_closure πŸ“–mathematicalβ€”NonUnitalSubsemiring
SetLike.instMembership
instSetLike
closure
β€”mem_sInf
mem_closure_iff πŸ“–mathematicalβ€”NonUnitalSubsemiring
SetLike.instMembership
instSetLike
closure
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddSubmonoid.instSetLike
AddSubmonoid.closure
SetLike.coe
Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Subsemigroup.instSetLike
Subsemigroup.closure
β€”Set.ext_iff
coe_closure_eq
mem_closure_of_mem πŸ“–mathematicalSet
Set.instMembership
NonUnitalSubsemiring
SetLike.instMembership
instSetLike
closure
β€”subset_closure
mem_comap πŸ“–mathematicalβ€”NonUnitalSubsemiring
SetLike.instMembership
instSetLike
comap
DFunLike.coe
β€”β€”
mem_iInf πŸ“–mathematicalβ€”NonUnitalSubsemiring
SetLike.instMembership
instSetLike
iInf
instInfSet
β€”β€”
mem_iSup_of_directed πŸ“–mathematicalDirected
NonUnitalSubsemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”Subsemigroup.coe_iSup_of_directed
AddSubmonoid.coe_iSup_of_directed
iSup_le
Set.mem_iUnion
le_iSup
mem_map πŸ“–mathematicalβ€”NonUnitalSubsemiring
SetLike.instMembership
instSetLike
map
DFunLike.coe
β€”β€”
mem_map_equiv πŸ“–mathematicalβ€”NonUnitalSubsemiring
SetLike.instMembership
instSetLike
map
NonUnitalRingHom
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHomClass.toNonUnitalRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toNonUnitalRingHomClass
RingEquiv.instRingEquivClass
DFunLike.coe
RingEquiv.symm
β€”NonUnitalRingHom.instNonUnitalRingHomClass
RingEquivClass.toNonUnitalRingHomClass
RingEquiv.instRingEquivClass
Set.mem_image_equiv
mem_prod πŸ“–mathematicalβ€”NonUnitalSubsemiring
Prod.instNonUnitalNonAssocSemiring
SetLike.instMembership
instSetLike
prod
β€”β€”
mem_sInf πŸ“–mathematicalβ€”NonUnitalSubsemiring
SetLike.instMembership
instSetLike
InfSet.sInf
instInfSet
β€”Set.mem_iInterβ‚‚
mem_sSup_of_directedOn πŸ“–mathematicalSet.Nonempty
NonUnitalSubsemiring
DirectedOn
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
Set
Set.instMembership
β€”sSup_eq_iSup'
mem_iSup_of_directed
Set.Nonempty.to_subtype
DirectedOn.directed_val
notMem_of_notMem_closure πŸ“–mathematicalNonUnitalSubsemiring
SetLike.instMembership
instSetLike
closure
Set
Set.instMembership
β€”subset_closure
prod_mono πŸ“–mathematicalNonUnitalSubsemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Prod.instNonUnitalNonAssocSemiring
prod
β€”Set.prod_mono
prod_mono_left πŸ“–mathematicalβ€”Monotone
NonUnitalSubsemiring
Prod.instNonUnitalNonAssocSemiring
PartialOrder.toPreorder
instPartialOrder
prod
β€”prod_mono
le_refl
prod_mono_right πŸ“–mathematicalβ€”Monotone
NonUnitalSubsemiring
Prod.instNonUnitalNonAssocSemiring
PartialOrder.toPreorder
instPartialOrder
prod
β€”prod_mono
le_refl
prod_top πŸ“–mathematicalβ€”prod
Top.top
NonUnitalSubsemiring
instTop
comap
Prod.instNonUnitalNonAssocSemiring
NonUnitalRingHom
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHom.fst
β€”ext
NonUnitalRingHom.instNonUnitalRingHomClass
range_fst πŸ“–mathematicalβ€”NonUnitalRingHom.srange
Prod.instNonUnitalNonAssocSemiring
NonUnitalRingHom
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHom.fst
Top.top
NonUnitalSubsemiring
instTop
β€”NonUnitalRingHom.srange_eq_top_of_surjective
NonUnitalRingHom.instNonUnitalRingHomClass
Prod.fst_surjective
Zero.instNonempty
range_snd πŸ“–mathematicalβ€”NonUnitalRingHom.srange
Prod.instNonUnitalNonAssocSemiring
NonUnitalRingHom
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHom.snd
Top.top
NonUnitalSubsemiring
instTop
β€”NonUnitalRingHom.srange_eq_top_of_surjective
NonUnitalRingHom.instNonUnitalRingHomClass
Prod.snd_surjective
Zero.instNonempty
sInf_toAddSubmonoid πŸ“–mathematicalβ€”toAddSubmonoid
InfSet.sInf
NonUnitalSubsemiring
instInfSet
iInf
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddSubmonoid.instInfSet
Set
Set.instMembership
β€”mk'_toAddSubmonoid
sInf_toSubsemigroup πŸ“–mathematicalβ€”toSubsemigroup
InfSet.sInf
NonUnitalSubsemiring
instInfSet
iInf
Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Subsemigroup.instInfSet
Set
Set.instMembership
β€”mk'_toSubsemigroup
srange_subtype πŸ“–mathematicalβ€”NonUnitalRingHom.srange
NonUnitalSubsemiring
SetLike.instMembership
instSetLike
NonUnitalSubsemiringClass.toNonUnitalNonAssocSemiring
instNonUnitalSubsemiringClass
NonUnitalRingHom
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalSubsemiringClass.subtype
β€”SetLike.coe_injective
instNonUnitalSubsemiringClass
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHom.coe_srange
Subtype.range_coe
subset_closure πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
NonUnitalSubsemiring
instSetLike
closure
β€”mem_closure
toAddSubmonoid_mono πŸ“–mathematicalβ€”Monotone
NonUnitalSubsemiring
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
PartialOrder.toPreorder
instPartialOrder
AddSubmonoid.instPartialOrder
toAddSubmonoid
β€”StrictMono.monotone
toAddSubmonoid_strictMono
toAddSubmonoid_strictMono πŸ“–mathematicalβ€”StrictMono
NonUnitalSubsemiring
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
PartialOrder.toPreorder
instPartialOrder
AddSubmonoid.instPartialOrder
toAddSubmonoid
β€”β€”
toSubsemigroup_mono πŸ“–mathematicalβ€”Monotone
NonUnitalSubsemiring
Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
PartialOrder.toPreorder
instPartialOrder
Subsemigroup.instPartialOrder
toSubsemigroup
β€”StrictMono.monotone
toSubsemigroup_strictMono
toSubsemigroup_strictMono πŸ“–mathematicalβ€”StrictMono
NonUnitalSubsemiring
Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
PartialOrder.toPreorder
instPartialOrder
Subsemigroup.instPartialOrder
toSubsemigroup
β€”β€”
topEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
NonUnitalSubsemiring
SetLike.instMembership
instSetLike
Top.top
instTop
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalSubsemiringClass.toNonUnitalNonAssocSemiring
instNonUnitalSubsemiringClass
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
topEquiv
Subsemigroup
Subsemigroup.instSetLike
Subsemigroup.instTop
β€”instNonUnitalSubsemiringClass
topEquiv_symm_apply_coe πŸ“–mathematicalβ€”Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SetLike.instMembership
Subsemigroup.instSetLike
Top.top
Subsemigroup.instTop
DFunLike.coe
RingEquiv
NonUnitalSubsemiring
instSetLike
instTop
NonUnitalSubsemiringClass.toNonUnitalNonAssocSemiring
instNonUnitalSubsemiringClass
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
topEquiv
β€”instNonUnitalSubsemiringClass
top_prod πŸ“–mathematicalβ€”prod
Top.top
NonUnitalSubsemiring
instTop
comap
Prod.instNonUnitalNonAssocSemiring
NonUnitalRingHom
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHom.snd
β€”ext
NonUnitalRingHom.instNonUnitalRingHomClass
top_prod_top πŸ“–mathematicalβ€”prod
Top.top
NonUnitalSubsemiring
instTop
Prod.instNonUnitalNonAssocSemiring
β€”NonUnitalRingHom.instNonUnitalRingHomClass
top_prod
comap_top

NonUnitalSubsemiring.center

Definitions

NameCategoryTheorems
instNonUnitalCommSemiring πŸ“–CompOp
7 mathmath: CentroidHom.star_centerToCentroidCenter, NonUnitalSubsemiring.centerCongr_symm_apply_coe, NonUnitalSubsemiring.centerToMulOpposite_symm_apply_coe, NonUnitalSubsemiring.centerToMulOpposite_apply_coe, CentroidHom.centerToCentroidCenter_apply, CentroidHom.centerToCentroid_apply, NonUnitalSubsemiring.centerCongr_apply_coe

RingEquiv

Definitions

NameCategoryTheorems
nonUnitalSubsemiringCongr πŸ“–CompOpβ€”
nonUnitalSubsemiringMap πŸ“–CompOp
2 mathmath: nonUnitalSubsemiringMap_symm_apply_coe, nonUnitalSubsemiringMap_apply_coe
sofLeftInverse' πŸ“–CompOp
2 mathmath: sofLeftInverse'_apply, sofLeftInverse'_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
nonUnitalSubsemiringMap_apply_coe πŸ“–mathematicalβ€”Set
Set.instMembership
Set.image
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
EquivLike.toEquiv
AddEquiv
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddEquiv.instEquivLike
toAddEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
SetLike.coe
AddSubmonoid
AddSubmonoid.instSetLike
NonUnitalSubsemiring.toAddSubmonoid
RingEquiv
NonUnitalSubsemiring
SetLike.instMembership
NonUnitalSubsemiring.instSetLike
NonUnitalSubsemiring.map
NonUnitalRingHom
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
toNonUnitalRingHom
NonUnitalSubsemiringClass.toNonUnitalNonAssocSemiring
NonUnitalSubsemiring.instNonUnitalSubsemiringClass
instEquivLike
nonUnitalSubsemiringMap
β€”NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalSubsemiring.instNonUnitalSubsemiringClass
nonUnitalSubsemiringMap_symm_apply_coe πŸ“–mathematicalβ€”Set
Set.instMembership
SetLike.coe
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddSubmonoid.instSetLike
NonUnitalSubsemiring.toAddSubmonoid
DFunLike.coe
RingEquiv
NonUnitalSubsemiring
SetLike.instMembership
NonUnitalSubsemiring.instSetLike
NonUnitalSubsemiring.map
NonUnitalRingHom
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
toNonUnitalRingHom
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalSubsemiringClass.toNonUnitalNonAssocSemiring
NonUnitalSubsemiring.instNonUnitalSubsemiringClass
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
symm
nonUnitalSubsemiringMap
AddEquiv
AddEquiv.instEquivLike
AddEquiv.symm
AddEquivClass.toAddEquiv
RingEquivClass.toAddEquivClass
instRingEquivClass
Set.image
β€”NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalSubsemiring.instNonUnitalSubsemiringClass
sofLeftInverse'_apply πŸ“–mathematicalDFunLike.coeNonUnitalSubsemiring
SetLike.instMembership
NonUnitalSubsemiring.instSetLike
NonUnitalRingHom.srange
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalSubsemiringClass.toNonUnitalNonAssocSemiring
NonUnitalSubsemiring.instNonUnitalSubsemiringClass
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
sofLeftInverse'
β€”NonUnitalSubsemiring.instNonUnitalSubsemiringClass
sofLeftInverse'_symm_apply πŸ“–mathematicalDFunLike.coeRingEquiv
NonUnitalSubsemiring
SetLike.instMembership
NonUnitalSubsemiring.instSetLike
NonUnitalRingHom.srange
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalSubsemiringClass.toNonUnitalNonAssocSemiring
NonUnitalSubsemiring.instNonUnitalSubsemiringClass
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
symm
sofLeftInverse'
β€”NonUnitalSubsemiring.instNonUnitalSubsemiringClass

Set

Theorems

NameKindAssumesProvesValidatesDepends On
mem_center_iff_addMonoidHom πŸ“–mathematicalβ€”Set
instMembership
center
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddMonoidHom.mulLeft
AddMonoidHom.mulRight
AddMonoidHom.comprβ‚‚
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddMonoidHom.mul
AddMonoidHom.comp
AddMonoidHom
AddZeroClass.toAddZero
AddMonoidHom.instAddCommMonoid
AddMonoidHom.complβ‚‚
β€”mem_center_iff
isMulCentral_iff

Subsemigroup

Definitions

NameCategoryTheorems
nonUnitalSubsemiringClosure πŸ“–CompOp
3 mathmath: nonUnitalSubsemiringClosure_coe, nonUnitalSubsemiringClosure_toAddSubmonoid, nonUnitalSubsemiringClosure_eq_closure

Theorems

NameKindAssumesProvesValidatesDepends On
nonUnitalSubsemiringClosure_coe πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubsemiring
NonUnitalSubsemiring.instSetLike
nonUnitalSubsemiringClosure
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddSubmonoid.instSetLike
AddSubmonoid.closure
Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
instSetLike
β€”β€”
nonUnitalSubsemiringClosure_eq_closure πŸ“–mathematicalβ€”nonUnitalSubsemiringClosure
NonUnitalSubsemiring.closure
SetLike.coe
Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
instSetLike
β€”NonUnitalSubsemiring.ext
AddSubmonoid.mem_closure
NonUnitalSubsemiring.mem_closure
nonUnitalSubsemiringClosure_toAddSubmonoid πŸ“–mathematicalβ€”NonUnitalSubsemiring.toAddSubmonoid
nonUnitalSubsemiringClosure
AddSubmonoid.closure
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
SetLike.coe
Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
instSetLike
β€”β€”

---

← Back to Index