| Name | Category | Theorems |
center π | CompOp | 21 mathmath: CentroidHom.star_centerToCentroidCenter, Subalgebra.coe_center, centerCongr_symm_apply_coe, centralizer_univ, centerToMulOpposite_symm_apply_coe, center_eq_top, coe_center, Subsemiring.center_toSubmonoid, NonUnitalNonAssocCommSemiring.mem_center_iff, NonUnitalSubring.center_toNonUnitalSubsemiring, NonUnitalSubalgebra.center_toNonUnitalSubsemiring, mem_center_iff, NonUnitalNonAssocSemiring.mem_center_iff, centralizer_eq_top_iff_subset, centerToMulOpposite_apply_coe, CentroidHom.centerToCentroidCenter_apply, center_le_centralizer, CentroidHom.centerToCentroid_apply, center_toSubsemigroup, centerCongr_apply_coe, Subsemiring.coe_center
|
centerCongr π | CompOp | 2 mathmath: centerCongr_symm_apply_coe, centerCongr_apply_coe
|
centerToMulOpposite π | CompOp | 2 mathmath: centerToMulOpposite_symm_apply_coe, centerToMulOpposite_apply_coe
|
centralizer π | CompOp | 8 mathmath: centralizer_univ, closure_le_centralizer_centralizer, coe_centralizer, centralizer_eq_top_iff_subset, centralizer_toSubsemigroup, center_le_centralizer, centralizer_le, mem_centralizer_iff
|
closure π | CompOp | 23 mathmath: mem_closure_of_mem, subset_closure, closure_union, closure_empty, closure_addSubmonoid_closure, closure_le_centralizer_centralizer, closure_mono, NonUnitalRingHom.map_sclosure, NonUnitalRingHom.sclosure_preimage_le, closure_subsemigroup_closure, closure_univ, closure_sUnion, closure_iUnion, closure_le, mem_closure, NonUnitalAlgebra.adjoin_toSubmodule, closure_isSquare, mem_closure_iff, Submonoid.subsemiringClosure_toNonUnitalSubsemiring, coe_closure_eq, Subsemigroup.nonUnitalSubsemiringClosure_eq_closure, closure_eq, NonUnitalRingHom.eqOn_sclosure
|
closureNonUnitalCommSemiringOfComm π | CompOp | β |
comap π | CompOp | 13 mathmath: top_prod, comap_iInf, gc_map_comap, map_equiv_eq_comap_symm, NonUnitalRingHom.sclosure_preimage_le, comap_comap, map_le_iff_le_comap, comap_equiv_eq_map_symm, comap_inf, comap_top, mem_comap, prod_top, coe_comap
|
decidableMemCenter π | CompOp | β |
equivMapOfInjective π | CompOp | 1 mathmath: coe_equivMapOfInjective_apply
|
gi π | CompOp | β |
instCompleteLattice π | CompOp | 9 mathmath: mem_iSup_of_directed, closure_union, coe_iSup_of_directed, map_iSup, closure_sUnion, closure_iUnion, map_sup, coe_sSup_of_directedOn, mem_sSup_of_directedOn
|
instInfSet π | CompOp | 9 mathmath: NonUnitalAlgebra.sInf_toNonUnitalSubsemiring, mem_iInf, comap_iInf, map_iInf, mem_sInf, sInf_toAddSubmonoid, coe_iInf, sInf_toSubsemigroup, coe_sInf
|
map π | CompOp | 21 mathmath: NonUnitalRingHom.srange_eq_map, coe_map, coe_equivMapOfInjective_apply, mem_map_equiv, map_map, map_id, gc_map_comap, map_iInf, map_equiv_eq_comap_symm, NonUnitalRingHom.map_sclosure, map_iSup, NonUnitalSubalgebra.map_toNonUnitalSubsemiring, map_le_iff_le_comap, mem_map, comap_equiv_eq_map_symm, NonUnitalRingHom.map_srange, RingEquiv.nonUnitalSubsemiringMap_symm_apply_coe, map_sup, map_inf, map_bot, RingEquiv.nonUnitalSubsemiringMap_apply_coe
|
prod π | CompOp | 8 mathmath: top_prod, prod_mono, prod_mono_left, top_prod_top, coe_prod, prod_top, prod_mono_right, mem_prod
|
prodEquiv π | CompOp | β |
topEquiv π | CompOp | 2 mathmath: topEquiv_symm_apply_coe, topEquiv_apply
|