Documentation

Mathlib.RingTheory.NonUnitalSubsemiring.Basic

Bundled non-unital subsemirings #

We define the CompleteLattice structure, and non-unital subsemiring map, comap and range (srange) of a NonUnitalRingHom etc.

The ring equiv between the top element of NonUnitalSubsemiring R and R.

Equations
    Instances For

      The preimage of a non-unital subsemiring along a non-unital ring homomorphism is a non-unital subsemiring.

      Equations
        Instances For
          @[simp]
          theorem NonUnitalSubsemiring.coe_comap {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] (s : NonUnitalSubsemiring S) (f : F) :
          ↑(comap f s) = ⇑f ⁻¹' ↑s
          theorem NonUnitalSubsemiring.comap_comap {R : Type u} {S : Type v} {T : Type w} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] [NonUnitalNonAssocSemiring T] {F : Type u_1} {G : Type u_2} [FunLike F R S] [NonUnitalRingHomClass F R S] [FunLike G S T] [NonUnitalRingHomClass G S T] (s : NonUnitalSubsemiring T) (g : G) (f : F) :
          comap f (comap g s) = comap ((↑g).comp ↑f) s

          The image of a non-unital subsemiring along a ring homomorphism is a non-unital subsemiring.

          Equations
            Instances For
              @[simp]
              theorem NonUnitalSubsemiring.coe_map {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] (f : F) (s : NonUnitalSubsemiring R) :
              ↑(map f s) = ⇑f '' ↑s
              @[simp]
              theorem NonUnitalSubsemiring.mem_map {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] {f : F} {s : NonUnitalSubsemiring R} {y : S} :
              y ∈ map f s ↔ βˆƒ x ∈ s, f x = y
              theorem NonUnitalSubsemiring.map_map {R : Type u} {S : Type v} {T : Type w} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] [NonUnitalNonAssocSemiring T] {F : Type u_1} {G : Type u_2} [FunLike F R S] [NonUnitalRingHomClass F R S] [FunLike G S T] [NonUnitalRingHomClass G S T] (s : NonUnitalSubsemiring R) (g : G) (f : F) :
              map (↑g) (map (↑f) s) = map ((↑g).comp ↑f) s
              noncomputable def NonUnitalSubsemiring.equivMapOfInjective {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] (s : NonUnitalSubsemiring R) (f : F) (hf : Function.Injective ⇑f) :
              β†₯s ≃+* β†₯(map f s)

              A non-unital subsemiring is isomorphic to its image under an injective function

              Equations
                Instances For
                  @[simp]
                  theorem NonUnitalSubsemiring.coe_equivMapOfInjective_apply {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] (s : NonUnitalSubsemiring R) (f : F) (hf : Function.Injective ⇑f) (x : β†₯s) :
                  ↑((s.equivMapOfInjective f hf) x) = f ↑x

                  The range of a non-unital ring homomorphism is a non-unital subsemiring. See note [range copy pattern].

                  Equations
                    Instances For
                      @[simp]
                      theorem NonUnitalRingHom.coe_srange {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] (f : F) :
                      ↑(srange f) = Set.range ⇑f
                      @[simp]
                      theorem NonUnitalRingHom.mem_srange {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] {f : F} {y : S} :
                      y ∈ srange f ↔ βˆƒ (x : R), f x = y
                      instance NonUnitalRingHom.finite_srange {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] [Finite R] (f : F) :
                      Finite β†₯(srange f)

                      The range of a morphism of non-unital semirings is finite if the domain is finite.

                      @[simp]
                      theorem NonUnitalSubsemiring.coe_sInf {R : Type u} [NonUnitalNonAssocSemiring R] (S : Set (NonUnitalSubsemiring R)) :
                      ↑(sInf S) = β‹‚ s ∈ S, ↑s
                      @[simp]
                      theorem NonUnitalSubsemiring.mem_sInf {R : Type u} [NonUnitalNonAssocSemiring R] {S : Set (NonUnitalSubsemiring R)} {x : R} :
                      x ∈ sInf S ↔ βˆ€ p ∈ S, x ∈ p
                      @[simp]
                      theorem NonUnitalSubsemiring.coe_iInf {R : Type u} [NonUnitalNonAssocSemiring R] {ΞΉ : Sort u_1} {S : ΞΉ β†’ NonUnitalSubsemiring R} :
                      ↑(β¨… (i : ΞΉ), S i) = β‹‚ (i : ΞΉ), ↑(S i)
                      @[simp]
                      theorem NonUnitalSubsemiring.mem_iInf {R : Type u} [NonUnitalNonAssocSemiring R] {ΞΉ : Sort u_1} {S : ΞΉ β†’ NonUnitalSubsemiring R} {x : R} :
                      x ∈ β¨… (i : ΞΉ), S i ↔ βˆ€ (i : ΞΉ), x ∈ S i

                      Non-unital subsemirings of a non-unital semiring form a complete lattice.

                      Equations

                        The center of a semiring R is the set of elements that commute and associate with everything in R

                        Equations
                          Instances For

                            The center is commutative and associative.

                            Equations

                              A point-free means of proving membership in the center, for a non-associative ring.

                              This can be helpful when working with types that have ext lemmas for R β†’+ R.

                              The center of isomorphic (not necessarily unital or associative) semirings are isomorphic.

                              Equations
                                Instances For

                                  The center of a (not necessarily unital or associative) semiring is isomorphic to the center of its opposite.

                                  Equations
                                    Instances For
                                      theorem NonUnitalSubsemiring.mem_center_iff {R : Type u_1} [NonUnitalSemiring R] {z : R} :
                                      z ∈ center R ↔ βˆ€ (g : R), g * z = z * g

                                      The centralizer of a set as non-unital subsemiring.

                                      Equations
                                        Instances For
                                          theorem NonUnitalSubsemiring.mem_centralizer_iff {R : Type u_1} [NonUnitalSemiring R] {s : Set R} {z : R} :
                                          z ∈ centralizer s ↔ βˆ€ g ∈ s, g * z = z * g
                                          @[simp]

                                          The non-unital subsemiring generated by a set includes the set.

                                          theorem NonUnitalSubsemiring.notMem_of_notMem_closure {R : Type u} [NonUnitalNonAssocSemiring R] {s : Set R} {P : R} (hP : P βˆ‰ closure s) :
                                          P βˆ‰ s
                                          @[simp]

                                          A non-unital subsemiring S includes closure s if and only if it includes s.

                                          theorem NonUnitalSubsemiring.closure_mono {R : Type u} [NonUnitalNonAssocSemiring R] ⦃s t : Set R⦄ (h : s βŠ† t) :

                                          Subsemiring closure of a set is monotone in its argument: if s βŠ† t, then closure s ≀ closure t.

                                          theorem NonUnitalSubsemiring.closure_eq_of_le {R : Type u} [NonUnitalNonAssocSemiring R] {s : Set R} {t : NonUnitalSubsemiring R} (h₁ : s βŠ† ↑t) (hβ‚‚ : t ≀ closure s) :
                                          @[reducible, inline]
                                          abbrev NonUnitalSubsemiring.closureNonUnitalCommSemiringOfComm {R : Type u_1} [NonUnitalSemiring R] {s : Set R} (hcomm : βˆ€ x ∈ s, βˆ€ y ∈ s, x * y = y * x) :

                                          If all the elements of a set s commute, then closure s is a non-unital commutative semiring.

                                          Equations
                                            Instances For

                                              The additive closure of a non-unital subsemigroup is a non-unital subsemiring.

                                              Equations
                                                Instances For

                                                  The elements of the non-unital subsemiring closure of M are exactly the elements of the additive closure of a multiplicative subsemigroup M.

                                                  theorem NonUnitalSubsemiring.closure_induction {R : Type u} [NonUnitalNonAssocSemiring R] {s : Set R} {p : (x : R) β†’ x ∈ closure s β†’ Prop} (mem : βˆ€ (x : R) (hx : x ∈ s), p x β‹―) (zero : p 0 β‹―) (add : βˆ€ (x y : R) (hx : x ∈ closure s) (hy : y ∈ closure s), p x hx β†’ p y hy β†’ p (x + y) β‹―) (mul : βˆ€ (x y : R) (hx : x ∈ closure s) (hy : y ∈ closure s), p x hx β†’ p y hy β†’ p (x * y) β‹―) {x : R} (hx : x ∈ closure s) :
                                                  p x hx

                                                  An induction principle for closure membership. If p holds for 0, 1, and all elements of s, and is preserved under addition and multiplication, then p holds for all elements of the closure of s.

                                                  theorem NonUnitalSubsemiring.closure_inductionβ‚‚ {R : Type u} [NonUnitalNonAssocSemiring R] {s : Set R} {p : (x y : R) β†’ x ∈ closure s β†’ y ∈ closure s β†’ Prop} (mem_mem : βˆ€ (x : R) (hx : x ∈ s) (y : R) (hy : y ∈ s), p x y β‹― β‹―) (zero_left : βˆ€ (x : R) (hx : x ∈ closure s), p 0 x β‹― hx) (zero_right : βˆ€ (x : R) (hx : x ∈ closure s), p x 0 hx β‹―) (add_left : βˆ€ (x y z : R) (hx : x ∈ closure s) (hy : y ∈ closure s) (hz : z ∈ closure s), p x z hx hz β†’ p y z hy hz β†’ p (x + y) z β‹― hz) (add_right : βˆ€ (x y z : R) (hx : x ∈ closure s) (hy : y ∈ closure s) (hz : z ∈ closure s), p x y hx hy β†’ p x z hx hz β†’ p x (y + z) hx β‹―) (mul_left : βˆ€ (x y z : R) (hx : x ∈ closure s) (hy : y ∈ closure s) (hz : z ∈ closure s), p x z hx hz β†’ p y z hy hz β†’ p (x * y) z β‹― hz) (mul_right : βˆ€ (x y z : R) (hx : x ∈ closure s) (hy : y ∈ closure s) (hz : z ∈ closure s), p x y hx hy β†’ p x z hx hz β†’ p x (y * z) hx β‹―) {x y : R} (hx : x ∈ closure s) (hy : y ∈ closure s) :
                                                  p x y hx hy

                                                  An induction principle for closure membership for predicates with two arguments.

                                                  closure forms a Galois insertion with the coercion to set.

                                                  Equations
                                                    Instances For
                                                      @[simp]

                                                      Closure of a non-unital subsemiring S equals S.

                                                      theorem NonUnitalSubsemiring.closure_iUnion {R : Type u} [NonUnitalNonAssocSemiring R] {ΞΉ : Sort u_2} (s : ΞΉ β†’ Set R) :
                                                      closure (⋃ (i : ΞΉ), s i) = ⨆ (i : ΞΉ), closure (s i)
                                                      theorem NonUnitalSubsemiring.map_sup {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] (s t : NonUnitalSubsemiring R) (f : F) :
                                                      map f (s βŠ” t) = map f s βŠ” map f t
                                                      theorem NonUnitalSubsemiring.map_iSup {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] {ΞΉ : Sort u_2} (f : F) (s : ΞΉ β†’ NonUnitalSubsemiring R) :
                                                      map f (iSup s) = ⨆ (i : ΞΉ), map f (s i)
                                                      theorem NonUnitalSubsemiring.map_inf {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] (s t : NonUnitalSubsemiring R) (f : F) (hf : Function.Injective ⇑f) :
                                                      map f (s βŠ“ t) = map f s βŠ“ map f t
                                                      theorem NonUnitalSubsemiring.map_iInf {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] {ΞΉ : Sort u_2} [Nonempty ΞΉ] (f : F) (hf : Function.Injective ⇑f) (s : ΞΉ β†’ NonUnitalSubsemiring R) :
                                                      map f (iInf s) = β¨… (i : ΞΉ), map f (s i)
                                                      theorem NonUnitalSubsemiring.comap_inf {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] (s t : NonUnitalSubsemiring S) (f : F) :
                                                      comap f (s βŠ“ t) = comap f s βŠ“ comap f t
                                                      theorem NonUnitalSubsemiring.comap_iInf {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] {ΞΉ : Sort u_2} (f : F) (s : ΞΉ β†’ NonUnitalSubsemiring S) :
                                                      comap f (iInf s) = β¨… (i : ΞΉ), comap f (s i)

                                                      Given NonUnitalSubsemirings s, t of semirings R, S respectively, s.prod t is s Γ— t as a non-unital subsemiring of R Γ— S.

                                                      Equations
                                                        Instances For
                                                          theorem NonUnitalSubsemiring.prod_mono {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] ⦃s₁ sβ‚‚ : NonUnitalSubsemiring R⦄ (hs : s₁ ≀ sβ‚‚) ⦃t₁ tβ‚‚ : NonUnitalSubsemiring S⦄ (ht : t₁ ≀ tβ‚‚) :
                                                          s₁.prod t₁ ≀ sβ‚‚.prod tβ‚‚

                                                          Product of non-unital subsemirings is isomorphic to their product as semigroups.

                                                          Equations
                                                            Instances For
                                                              theorem NonUnitalSubsemiring.mem_iSup_of_directed {R : Type u} [NonUnitalNonAssocSemiring R] {ΞΉ : Sort u_2} [hΞΉ : Nonempty ΞΉ] {S : ΞΉ β†’ NonUnitalSubsemiring R} (hS : Directed (fun (x1 x2 : NonUnitalSubsemiring R) => x1 ≀ x2) S) {x : R} :
                                                              x ∈ ⨆ (i : ΞΉ), S i ↔ βˆƒ (i : ΞΉ), x ∈ S i
                                                              theorem NonUnitalSubsemiring.coe_iSup_of_directed {R : Type u} [NonUnitalNonAssocSemiring R] {ΞΉ : Sort u_2} [hΞΉ : Nonempty ΞΉ] {S : ΞΉ β†’ NonUnitalSubsemiring R} (hS : Directed (fun (x1 x2 : NonUnitalSubsemiring R) => x1 ≀ x2) S) :
                                                              ↑(⨆ (i : ΞΉ), S i) = ⋃ (i : ΞΉ), ↑(S i)
                                                              theorem NonUnitalSubsemiring.mem_sSup_of_directedOn {R : Type u} [NonUnitalNonAssocSemiring R] {S : Set (NonUnitalSubsemiring R)} (Sne : S.Nonempty) (hS : DirectedOn (fun (x1 x2 : NonUnitalSubsemiring R) => x1 ≀ x2) S) {x : R} :
                                                              x ∈ sSup S ↔ βˆƒ s ∈ S, x ∈ s
                                                              theorem NonUnitalSubsemiring.coe_sSup_of_directedOn {R : Type u} [NonUnitalNonAssocSemiring R] {S : Set (NonUnitalSubsemiring R)} (Sne : S.Nonempty) (hS : DirectedOn (fun (x1 x2 : NonUnitalSubsemiring R) => x1 ≀ x2) S) :
                                                              ↑(sSup S) = ⋃ s ∈ S, ↑s
                                                              theorem NonUnitalRingHom.eq_of_eqOn_stop {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] {F : Type u_1} [FunLike F R S] {f g : F} (h : Set.EqOn ⇑f ⇑g β†‘βŠ€) :
                                                              f = g

                                                              Restriction of a non-unital ring homomorphism to its range interpreted as a non-unital subsemiring.

                                                              This is the bundled version of Set.rangeFactorization.

                                                              Equations
                                                                Instances For
                                                                  @[simp]
                                                                  theorem NonUnitalRingHom.coe_srangeRestrict {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] {F : Type u_1} [FunLike F R S] [NonUnitalNonAssocSemiring S] [NonUnitalRingHomClass F R S] (f : F) (x : R) :
                                                                  ↑((srangeRestrict f) x) = f x
                                                                  @[simp]

                                                                  The range of a surjective non-unital ring homomorphism is the whole of the codomain.

                                                                  theorem NonUnitalRingHom.eqOn_sclosure {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] {F : Type u_1} [FunLike F R S] [NonUnitalNonAssocSemiring S] [NonUnitalRingHomClass F R S] {f g : F} {s : Set R} (h : Set.EqOn (⇑f) (⇑g) s) :
                                                                  Set.EqOn ⇑f ⇑g ↑(NonUnitalSubsemiring.closure s)

                                                                  If two non-unital ring homomorphisms are equal on a set, then they are equal on its non-unital subsemiring closure.

                                                                  theorem NonUnitalRingHom.eq_of_eqOn_sdense {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] {F : Type u_1} [FunLike F R S] [NonUnitalNonAssocSemiring S] [NonUnitalRingHomClass F R S] {s : Set R} (hs : NonUnitalSubsemiring.closure s = ⊀) {f g : F} (h : Set.EqOn (⇑f) (⇑g) s) :
                                                                  f = g

                                                                  The image under a ring homomorphism of the subsemiring generated by a set equals the subsemiring generated by the image of the set.

                                                                  Makes the identity isomorphism from a proof two non-unital subsemirings of a multiplicative monoid are equal.

                                                                  Equations
                                                                    Instances For
                                                                      def RingEquiv.sofLeftInverse' {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] {g : S β†’ R} {f : F} (h : Function.LeftInverse g ⇑f) :

                                                                      Restrict a non-unital ring homomorphism with a left inverse to a ring isomorphism to its NonUnitalRingHom.srange.

                                                                      Equations
                                                                        Instances For
                                                                          @[simp]
                                                                          theorem RingEquiv.sofLeftInverse'_apply {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] {g : S β†’ R} {f : F} (h : Function.LeftInverse g ⇑f) (x : R) :
                                                                          ↑((sofLeftInverse' h) x) = f x
                                                                          @[simp]
                                                                          theorem RingEquiv.sofLeftInverse'_symm_apply {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] {g : S β†’ R} {f : F} (h : Function.LeftInverse g ⇑f) (x : β†₯(NonUnitalRingHom.srange f)) :
                                                                          (sofLeftInverse' h).symm x = g ↑x

                                                                          Given an equivalence e : R ≃+* S of non-unital semirings and a non-unital subsemiring s of R, nonUnitalSubsemiringMap e s is the induced equivalence between s and s.map e

                                                                          Equations
                                                                            Instances For
                                                                              @[simp]
                                                                              theorem RingEquiv.nonUnitalSubsemiringMap_symm_apply_coe {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (e : R ≃+* S) (s : NonUnitalSubsemiring R) (y : ↑(⇑↑e.toAddEquiv '' ↑s.toAddSubmonoid)) :
                                                                              ↑((e.nonUnitalSubsemiringMap s).symm y) = (↑e).symm ↑y