Documentation Verification Report

Perfection

πŸ“ Source: Mathlib/RingTheory/Perfection.lean

Statistics

MetricCount
DefinitionsModP, commRing, preVal, perfection, coeff, commRing, commSemiring, instInhabitedPerfection, map, pthRoot, PerfectionMap, equiv, map, PreTilt, coeff, instCommRing, val, valAux, Perfection, perfectionSubring, perfectionSubsemiring, Tilt, instField
23
TheoremscharP, mul_ne_zero_of_pow_p_ne_zero, nontrivial, preVal_add, preVal_eq_zero, preVal_mk, preVal_mul, preVal_zero, v_p_lt_preVal, v_p_lt_val, charP, coeff_add_ne_zero, coeff_frobenius, coeff_frobeniusEquiv_symm, coeff_iterate_frobenius, coeff_iterate_frobenius', coeff_iterate_frobeniusEquiv_symm, coeff_map, coeff_mk, coeff_ne_zero_of_le, coeff_pow_p, coeff_pow_p', coeff_pthRoot, coeff_surjective, ext, ext_iff, frobenius_pthRoot, hom_ext, lift_apply_apply_coe, lift_symm_apply, map_apply_coe, perfectRing, pthRoot_frobenius, comp_equiv, comp_equiv', comp_map, comp_symm_equiv, comp_symm_equiv', equiv_apply, hom_ext, id, injective, lift_apply, lift_symm_apply, map_eq_map, map_map, mk', of, surjective, coeff_def, coeff_frobenius, coeff_frobeniusEquiv_symm, coeff_iterate_frobenius, coeff_iterate_frobenius', coeff_iterate_frobeniusEquiv_symm, coeff_nat_find_add_ne_zero, coeff_pow_p, instCharP, instPerfectRing, isDomain, map_eq_zero, valAux_add, valAux_eq, valAux_mul, valAux_one, valAux_zero
66
Total89

ModP

Definitions

NameCategoryTheorems
commRing πŸ“–CompOp
6 mathmath: preVal_mul, WittVector.ker_map_le_ker_mk_comp_ghostComponent, WittVector.ghostComponentModPPow_teichmuller_coeff, WittVector.quotEquivOfEq_ghostComponentModPPow, preVal_add, WittVector.ghostComponentModPPow_map_mk
preVal πŸ“–CompOp
7 mathmath: PreTilt.valAux_eq, preVal_mul, preVal_mk, v_p_lt_preVal, preVal_zero, preVal_add, preVal_eq_zero

Theorems

NameKindAssumesProvesValidatesDepends On
charP πŸ“–mathematicalβ€”CharP
ModP
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Ideal.Quotient.instRingQuotient
Ideal.span
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instSingletonSet
AddMonoidWithOne.toNatCast
CommRing.toRing
β€”CharP.quotient
Fact.out
mul_ne_zero_of_pow_p_ne_zero πŸ“–β€”Valuation.Integers
NNReal
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NNReal.instLinearOrderedCommGroupWithZero
β€”β€”Ideal.instIsTwoSided_1
Ideal.Quotient.mk_surjective
one_div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
Nat.Prime.pos
Fact.out
RingHom.map_mul
v_p_lt_val
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
Valuation.map_mul
lt_of_le_of_lt
zero_le
NNReal.instCanonicallyOrderedAdd
zero_lt_iff
NNReal.rpow_one
NNReal.rpow_add
ne_of_gt
NNReal.rpow_le_rpow_of_exponent_ge
Valuation.Integers.map_le_one
map_natCast
add_div
div_le_one
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
Nat.Prime.two_le
mul_lt_mul''
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
IsOrderedRing.toMulPosMono
NNReal.instIsOrderedRing
mul_one_div_cancel
Nat.cast_ne_zero
Nat.Prime.ne_zero
NNReal.rpow_mul
NNReal.rpow_natCast
NNReal.rpow_lt_rpow_iff
Valuation.map_pow
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.map_pow
zero_le'
nontrivial πŸ“–mathematicalβ€”Nontrivial
ModP
β€”CharP.nontrivial_of_char_ne_one
Nat.Prime.ne_one
Fact.out
charP
preVal_add πŸ“–mathematicalValuation.Integers
NNReal
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NNReal.instLinearOrderedCommGroupWithZero
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
preVal
ModP
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
NNReal.instMax
β€”zero_add
le_max_right
add_zero
le_max_left
preVal_zero
zero_le
NNReal.instCanonicallyOrderedAdd
Ideal.instIsTwoSided_1
Ideal.Quotient.mk_surjective
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
Valuation.map_add
preVal_eq_zero πŸ“–mathematicalValuation.Integers
NNReal
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NNReal.instLinearOrderedCommGroupWithZero
preVal
instZeroNNReal
ModP
Submodule.Quotient.instZeroQuotient
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.span
Set
Set.instSingletonSet
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”by_contradiction
not_lt_zero'
v_p_lt_preVal
preVal_zero
preVal_mk πŸ“–mathematicalValuation.Integers
NNReal
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NNReal.instLinearOrderedCommGroupWithZero
preVal
DFunLike.coe
RingHom
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.span
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instSingletonSet
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DivisionRing.toRing
Field.toDivisionRing
Valuation.instFunLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
algebraMap
β€”Ideal.instIsTwoSided_1
Ideal.mem_span_singleton'
Ideal.Quotient.eq
Quotient.sound'
Quotient.mk_out'
Valuation.map_eq_of_sub_lt
lt_of_not_ge
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
Valuation.Integers.le_iff_dvd
Ideal.Quotient.eq_zero_iff_mem
Ideal.mem_span_singleton
dvd_of_mul_left_dvd
preVal_mul πŸ“–mathematicalValuation.Integers
NNReal
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NNReal.instLinearOrderedCommGroupWithZero
preVal
ModP
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”MulZeroClass.zero_mul
MulZeroClass.mul_zero
Ideal.instIsTwoSided_1
Ideal.Quotient.mk_surjective
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
Valuation.map_mul
preVal_zero πŸ“–mathematicalβ€”preVal
ModP
Submodule.Quotient.instZeroQuotient
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.span
Set
Set.instSingletonSet
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NNReal
instZeroNNReal
β€”β€”
v_p_lt_preVal πŸ“–mathematicalValuation.Integers
NNReal
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NNReal.instLinearOrderedCommGroupWithZero
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DivisionRing.toRing
Field.toDivisionRing
Valuation.instFunLike
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
preVal
β€”not_lt_zero'
preVal_zero
lt_of_not_ge
Ideal.instIsTwoSided_1
Ideal.Quotient.mk_surjective
Ideal.Quotient.eq_zero_iff_mem
Ideal.mem_span_singleton
Valuation.Integers.le_iff_dvd
map_natCast
RingHom.instRingHomClass
v_p_lt_val πŸ“–mathematicalValuation.Integers
NNReal
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NNReal.instLinearOrderedCommGroupWithZero
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DivisionRing.toRing
Field.toDivisionRing
Valuation.instFunLike
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
β€”Ideal.instIsTwoSided_1
lt_iff_not_ge
not_iff_not
map_natCast
RingHom.instRingHomClass
Valuation.Integers.le_iff_dvd
Ideal.Quotient.eq_zero_iff_mem
Ideal.mem_span_singleton

Monoid

Definitions

NameCategoryTheorems
perfection πŸ“–CompOpβ€”

Perfection

Definitions

NameCategoryTheorems
coeff πŸ“–CompOp
21 mathmath: PerfectionMap.map_eq_map, coeff_map, coeff_mk, coeff_iterate_frobenius, map_apply_coe, PerfectionMap.comp_equiv', ext_iff, PerfectionMap.comp_equiv, PerfectionMap.comp_symm_equiv, coeff_surjective, coeff_pthRoot, coeff_frobeniusEquiv_symm, PerfectionMap.comp_symm_equiv', coeff_iterate_frobeniusEquiv_symm, lift_symm_apply, PerfectionMap.of, coeff_pow_p, coeff_iterate_frobenius', coeff_pow_p', PreTilt.coeff_def, coeff_frobenius
commRing πŸ“–CompOpβ€”
commSemiring πŸ“–CompOp
28 mathmath: pthRoot_frobenius, perfectRing, PerfectionMap.map_eq_map, coeff_map, charP, coeff_mk, coeff_iterate_frobenius, map_apply_coe, PerfectionMap.comp_equiv', ext_iff, PerfectionMap.comp_equiv, PerfectionMap.comp_symm_equiv, coeff_surjective, coeff_pthRoot, coeff_frobeniusEquiv_symm, lift_apply_apply_coe, PerfectionMap.comp_symm_equiv', coeff_iterate_frobeniusEquiv_symm, lift_symm_apply, PerfectionMap.of, coeff_pow_p, coeff_iterate_frobenius', PerfectionMap.lift_apply, coeff_pow_p', PreTilt.coeff_def, PerfectionMap.equiv_apply, frobenius_pthRoot, coeff_frobenius
instInhabitedPerfection πŸ“–CompOpβ€”
map πŸ“–CompOp
3 mathmath: PerfectionMap.map_eq_map, coeff_map, map_apply_coe
pthRoot πŸ“–CompOp
3 mathmath: pthRoot_frobenius, coeff_pthRoot, frobenius_pthRoot

Theorems

NameKindAssumesProvesValidatesDepends On
charP πŸ“–mathematicalβ€”CharP
Ring.Perfection
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
β€”CharP.subsemiring
CharP.pi
coeff_add_ne_zero πŸ“–β€”β€”β€”β€”coeff_pow_p
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
zero_pow
Nat.Prime.ne_zero
Fact.out
coeff_frobenius πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Ring.Perfection
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
RingHom.instFunLike
coeff
frobenius
expChar_prime
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
charP
β€”coeff_pow_p
coeff_frobeniusEquiv_symm πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Ring.Perfection
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
RingHom.instFunLike
coeff
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
frobeniusEquiv
expChar_prime
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
charP
perfectRing
β€”expChar_prime
charP
perfectRing
frobenius_apply_frobeniusEquiv_symm
coeff_frobenius
coeff_iterate_frobenius πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Ring.Perfection
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
RingHom.instFunLike
coeff
Nat.iterate
frobenius
expChar_prime
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
charP
β€”expChar_prime
charP
Function.iterate_succ_apply'
coeff_frobenius
coeff_iterate_frobenius' πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Ring.Perfection
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
RingHom.instFunLike
coeff
Nat.iterate
frobenius
expChar_prime
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
charP
β€”expChar_prime
charP
coeff_iterate_frobenius
tsub_add_cancel_of_le
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
coeff_iterate_frobeniusEquiv_symm πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Ring.Perfection
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
RingHom.instFunLike
coeff
Nat.iterate
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
frobeniusEquiv
expChar_prime
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
charP
perfectRing
β€”expChar_prime
charP
perfectRing
add_zero
coeff_frobeniusEquiv_symm
coeff_map πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Ring.Perfection
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
RingHom.instFunLike
coeff
map
β€”β€”
coeff_mk πŸ“–mathematicalMonoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DFunLike.coe
RingHom
Ring.Perfection
Semiring.toNonAssocSemiring
commSemiring
RingHom.instFunLike
coeff
β€”β€”
coeff_ne_zero_of_le πŸ“–β€”β€”β€”β€”coeff_add_ne_zero
coeff_pow_p πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Ring.Perfection
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
RingHom.instFunLike
coeff
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
coeff_pow_p' πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DFunLike.coe
RingHom
Ring.Perfection
Semiring.toNonAssocSemiring
commSemiring
RingHom.instFunLike
coeff
β€”β€”
coeff_pthRoot πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Ring.Perfection
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
RingHom.instFunLike
coeff
pthRoot
β€”β€”
coeff_surjective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
frobenius
expChar_prime
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Ring.Perfection
commSemiring
coeff
β€”expChar_prime
Nat.leRec_succ
Nat.leRec_self
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
add_tsub_cancel_left
Nat.instOrderedSub
eq_natCast
RingHom.instRingHomClass
expChar_one
Nat.instCharZero
pow_succ
pow_mul
ext πŸ“–β€”DFunLike.coe
RingHom
Ring.Perfection
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
RingHom.instFunLike
coeff
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Ring.Perfection
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
RingHom.instFunLike
coeff
β€”ext
frobenius_pthRoot πŸ“–mathematicalβ€”RingHom.comp
Ring.Perfection
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
frobenius
expChar_prime
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
charP
pthRoot
RingHom.id
β€”RingHom.ext
expChar_prime
charP
ext
RingHom.comp_apply
RingHom.id_apply
RingHom.map_frobenius
coeff_pthRoot
coeff_frobenius
hom_ext πŸ“–β€”DFunLike.coe
RingHom
Ring.Perfection
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
RingHom.instFunLike
coeff
β€”β€”expChar_prime
Equiv.injective
RingHom.ext
lift_apply_apply_coe πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Ring.Perfection
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
RingHom.instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
lift
Nat.iterate
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
RingEquiv.instEquivLike
RingEquiv.symm
frobeniusEquiv
β€”expChar_prime
lift_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
RingHom
Ring.Perfection
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
lift
RingHom.comp
coeff
β€”expChar_prime
map_apply_coe πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Ring.Perfection
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
RingHom.instFunLike
map
coeff
β€”β€”
perfectRing πŸ“–mathematicalβ€”PerfectRing
Ring.Perfection
commSemiring
expChar_prime
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
charP
β€”expChar_prime
charP
Function.bijective_iff_has_inverse
DFunLike.congr_fun
frobenius_pthRoot
pthRoot_frobenius
pthRoot_frobenius πŸ“–mathematicalβ€”RingHom.comp
Ring.Perfection
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
pthRoot
frobenius
expChar_prime
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
charP
RingHom.id
β€”RingHom.ext
expChar_prime
charP
ext
RingHom.comp_apply
RingHom.id_apply
coeff_pthRoot
coeff_frobenius

PerfectionMap

Definitions

NameCategoryTheorems
equiv πŸ“–CompOp
6 mathmath: comp_equiv', comp_equiv, comp_symm_equiv, comp_symm_equiv', lift_apply, equiv_apply
map πŸ“–CompOp
3 mathmath: map_eq_map, map_map, comp_map

Theorems

NameKindAssumesProvesValidatesDepends On
comp_equiv πŸ“–mathematicalPerfectionMapDFunLike.coe
RingHom
Ring.Perfection
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Perfection.commSemiring
RingHom.instFunLike
Perfection.coeff
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
equiv
β€”expChar_prime
comp_equiv' πŸ“–mathematicalPerfectionMapRingHom.comp
Ring.Perfection
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Perfection.commSemiring
Perfection.coeff
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
equiv
β€”expChar_prime
RingHom.ext
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
comp_map πŸ“–mathematicalPerfectionMapRingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
map
β€”expChar_prime
Equiv.symm_apply_apply
comp_symm_equiv πŸ“–mathematicalPerfectionMapDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
RingEquiv
Ring.Perfection
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Perfection.commSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
equiv
Perfection.coeff
β€”expChar_prime
comp_equiv
RingEquiv.apply_symm_apply
comp_symm_equiv' πŸ“–mathematicalPerfectionMapRingHom.comp
Ring.Perfection
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Perfection.commSemiring
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.symm
equiv
Perfection.coeff
β€”expChar_prime
RingHom.ext
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
comp_symm_equiv
equiv_apply πŸ“–mathematicalPerfectionMapDFunLike.coe
RingEquiv
Ring.Perfection
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Perfection.commSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
equiv
RingHom
RingHom.instFunLike
Equiv
Equiv.instEquivLike
Perfection.lift
β€”expChar_prime
hom_ext πŸ“–β€”PerfectionMap
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
β€”β€”expChar_prime
Equiv.injective
RingHom.ext
id πŸ“–mathematicalβ€”PerfectionMap
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
β€”expChar_prime
injective_pow_p
Function.iterate_succ_apply'
frobeniusEquiv_symm_pow_p
injective πŸ“–β€”PerfectionMap
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
Nat.iterate
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
frobeniusEquiv
expChar_prime
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”expChar_prime
lift_apply πŸ“–mathematicalPerfectionMapDFunLike.coe
Equiv
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
EquivLike.toFunLike
Equiv.instEquivLike
lift
RingHom.comp
Ring.Perfection
Perfection.commSemiring
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
RingEquiv.instEquivLike
RingEquiv.symm
equiv
Perfection.lift
β€”expChar_prime
lift_symm_apply πŸ“–mathematicalPerfectionMapDFunLike.coe
Equiv
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
lift
RingHom.comp
β€”expChar_prime
map_eq_map πŸ“–mathematicalβ€”map
Ring.Perfection
Perfection.commSemiring
Perfection.charP
Perfection.perfectRing
Perfection.coeff
of
Perfection.map
β€”hom_ext
Perfection.charP
Perfection.perfectRing
of
map_map
Perfection.coeff_map
map_map πŸ“–mathematicalPerfectionMapDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
map
β€”expChar_prime
RingHom.ext_iff
comp_map
mk' πŸ“–mathematicalDFunLike.coe
Equiv
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Ring.Perfection
Perfection.commSemiring
EquivLike.toFunLike
Equiv.instEquivLike
Perfection.lift
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
PerfectionMapβ€”expChar_prime
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.injective
RingHom.ext_iff
Perfection.ext
RingEquiv.surjective
of πŸ“–mathematicalβ€”PerfectionMap
Ring.Perfection
Perfection.commSemiring
Perfection.charP
Perfection.perfectRing
Perfection.coeff
β€”mk'
Perfection.charP
Perfection.perfectRing
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
Equiv.apply_eq_iff_eq_symm_apply
surjective πŸ“–mathematicalPerfectionMap
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Nat.iterate
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
frobeniusEquiv
expChar_prime
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”expChar_prime

PreTilt

Definitions

NameCategoryTheorems
coeff πŸ“–CompOp
12 mathmath: valAux_eq, coeff_pow_p, mk_comp_untilt_eq_coeff_zero, coeff_frobeniusEquiv_symm, coeff_frobenius, coeff_iterate_frobeniusEquiv_symm, WittVector.ghostComponentModPPow_teichmuller_coeff, coeff_iterate_frobenius, mk_untilt_eq_coeff_zero, WittVector.mk_fontaineTheta, coeff_def, coeff_iterate_frobenius'
instCommRing πŸ“–CompOp
29 mathmath: valAux_eq, WittVector.factorPowSucc_comp_fontaineThetaModPPow, coeff_pow_p, instPerfectRing, WittVector.factorPowSucc_fontaineThetaModPPow_eq, mk_comp_untilt_eq_coeff_zero, WittVector.mk_pow_fontaineTheta, coeff_frobeniusEquiv_symm, valAux_zero, coeff_frobenius, coeff_iterate_frobeniusEquiv_symm, valAux_mul, WittVector.fontaineThetaModPPow_teichmuller, isDomain, WittVector.ghostComponentModPPow_teichmuller_coeff, surjective_fontaineTheta, pow_dvd_one_untiltAux_sub_one, WittVector.fontaineTheta_teichmuller, valAux_add, coeff_iterate_frobenius, valAux_one, untilt_iterate_frobeniusEquiv_symm_pow, instCharP, map_eq_zero, pow_dvd_mul_untiltAux_sub_untiltAux_mul, mk_untilt_eq_coeff_zero, WittVector.mk_fontaineTheta, coeff_def, coeff_iterate_frobenius'
val πŸ“–CompOp
1 mathmath: map_eq_zero
valAux πŸ“–CompOp
5 mathmath: valAux_eq, valAux_zero, valAux_mul, valAux_add, valAux_one

Theorems

NameKindAssumesProvesValidatesDepends On
coeff_def πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PreTilt
ModP
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
Ideal.Quotient.semiring
Ideal.span
Set
Set.instSingletonSet
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
RingHom.instFunLike
coeff
Ring.Perfection
Ideal.Quotient.commSemiring
Perfection.commSemiring
ModP.charP
Perfection.coeff
β€”β€”
coeff_frobenius πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PreTilt
ModP
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
Ideal.Quotient.semiring
Ideal.span
Set
Set.instSingletonSet
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
RingHom.instFunLike
coeff
frobenius
expChar_prime
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instCharP
β€”expChar_prime
instCharP
ModP.charP
Perfection.coeff_frobenius
coeff_frobeniusEquiv_symm πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PreTilt
ModP
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
Ideal.Quotient.semiring
Ideal.span
Set
Set.instSingletonSet
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
RingHom.instFunLike
coeff
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
frobeniusEquiv
expChar_prime
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instCharP
instPerfectRing
β€”expChar_prime
instCharP
instPerfectRing
ModP.charP
Perfection.coeff_frobeniusEquiv_symm
coeff_iterate_frobenius πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PreTilt
ModP
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
Ideal.Quotient.semiring
Ideal.span
Set
Set.instSingletonSet
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
RingHom.instFunLike
coeff
Nat.iterate
frobenius
expChar_prime
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instCharP
β€”expChar_prime
instCharP
ModP.charP
Perfection.coeff_iterate_frobenius
coeff_iterate_frobenius' πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PreTilt
ModP
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
Ideal.Quotient.semiring
Ideal.span
Set
Set.instSingletonSet
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
RingHom.instFunLike
coeff
Nat.iterate
frobenius
expChar_prime
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instCharP
β€”Perfection.coeff_iterate_frobenius'
ModP.charP
coeff_iterate_frobeniusEquiv_symm πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PreTilt
ModP
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
Ideal.Quotient.semiring
Ideal.span
Set
Set.instSingletonSet
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
RingHom.instFunLike
coeff
Nat.iterate
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
frobeniusEquiv
expChar_prime
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instCharP
instPerfectRing
β€”expChar_prime
instCharP
instPerfectRing
ModP.charP
Perfection.coeff_iterate_frobeniusEquiv_symm
coeff_nat_find_add_ne_zero πŸ“–β€”β€”β€”β€”Perfection.coeff_add_ne_zero
ModP.charP
Nat.find_spec
coeff_pow_p πŸ“–mathematicalβ€”ModP
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ideal.Quotient.semiring
Ideal.span
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instSingletonSet
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
DFunLike.coe
RingHom
PreTilt
Semiring.toNonAssocSemiring
instCommRing
RingHom.instFunLike
coeff
β€”Perfection.coeff_pow_p
ModP.charP
instCharP πŸ“–mathematicalβ€”CharP
PreTilt
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
instCommRing
β€”Perfection.charP
ModP.charP
instPerfectRing πŸ“–mathematicalβ€”PerfectRing
PreTilt
CommRing.toCommSemiring
instCommRing
expChar_prime
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCharP
β€”Perfection.perfectRing
ModP.charP
isDomain πŸ“–mathematicalValuation.Integers
NNReal
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NNReal.instLinearOrderedCommGroupWithZero
IsDomain
PreTilt
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
β€”Fact.out
NoZeroDivisors.to_isDomain
Nontrivial.exists_pair_ne
CharP.nontrivial_of_char_ne_one
Nat.Prime.ne_one
instCharP
map_eq_zero
Mathlib.Tactic.Contrapose.contrapose₁
Valuation.map_mul
mul_ne_zero
NNReal.instNoZeroDivisors
map_eq_zero πŸ“–mathematicalValuation.Integers
NNReal
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NNReal.instLinearOrderedCommGroupWithZero
DFunLike.coe
Valuation
PreTilt
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
CommRing.toRing
instCommRing
Valuation.instFunLike
val
instZeroNNReal
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Valuation.map_zero
Perfection.ext
ModP.charP
eq_zero_of_pow_eq_zero
isReduced_of_noZeroDivisors
NNReal.instNoZeroDivisors
valAux_eq
ModP.preVal_eq_zero
valAux_add πŸ“–mathematicalValuation.Integers
NNReal
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NNReal.instLinearOrderedCommGroupWithZero
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
valAux
PreTilt
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
NNReal.instMax
β€”zero_add
valAux_zero
max_eq_right
zero_le
NNReal.instCanonicallyOrderedAdd
le_refl
add_zero
max_eq_left
Perfection.ext
ModP.charP
Perfection.coeff_ne_zero_of_le
le_trans
le_max_left
le_max_right
valAux_eq
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
le_max_iff
ModP.preVal_add
le_max_of_le_left
pow_le_pow_left'
NNReal.mulLeftMono
covariant_swap_mul_of_covariant_mul
le_max_of_le_right
valAux_eq πŸ“–mathematicalValuation.Integers
NNReal
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NNReal.instLinearOrderedCommGroupWithZero
valAux
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
ModP.preVal
DFunLike.coe
RingHom
PreTilt
ModP
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
Ideal.Quotient.semiring
Ideal.span
Set
Set.instSingletonSet
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
RingHom.instFunLike
coeff
Nat.instMonoid
β€”valAux.eq_1
Nat.find_min'
Ideal.instIsTwoSided_1
Ideal.Quotient.mk_surjective
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
coeff_pow_p
coeff_nat_find_add_ne_zero
add_assoc
Valuation.map_pow
pow_mul
pow_succ'
valAux_mul πŸ“–mathematicalValuation.Integers
NNReal
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NNReal.instLinearOrderedCommGroupWithZero
valAux
PreTilt
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”MulZeroClass.zero_mul
valAux_zero
MulZeroClass.mul_zero
Perfection.ext
ModP.charP
Perfection.coeff_ne_zero_of_le
le_max_left
le_max_right
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
ModP.mul_ne_zero_of_pow_p_ne_zero
coeff_pow_p
valAux_eq
Perfection.coeff_add_ne_zero
ModP.preVal_mul
mul_pow
valAux_one πŸ“–mathematicalValuation.Integers
NNReal
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NNReal.instLinearOrderedCommGroupWithZero
valAux
PreTilt
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
instCommRing
instOneNNReal
β€”valAux_eq
one_ne_zero
NeZero.one
ModP.nontrivial
pow_zero
pow_one
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Ideal.instIsTwoSided_1
RingHom.map_one
Valuation.map_one
valAux_zero πŸ“–mathematicalβ€”valAux
PreTilt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
NNReal
instZeroNNReal
β€”β€”

Ring

Definitions

NameCategoryTheorems
Perfection πŸ“–CompOp
28 mathmath: Perfection.pthRoot_frobenius, Perfection.perfectRing, PerfectionMap.map_eq_map, Perfection.coeff_map, Perfection.charP, Perfection.coeff_mk, Perfection.coeff_iterate_frobenius, Perfection.map_apply_coe, PerfectionMap.comp_equiv', Perfection.ext_iff, PerfectionMap.comp_equiv, PerfectionMap.comp_symm_equiv, Perfection.coeff_surjective, Perfection.coeff_pthRoot, Perfection.coeff_frobeniusEquiv_symm, Perfection.lift_apply_apply_coe, PerfectionMap.comp_symm_equiv', Perfection.coeff_iterate_frobeniusEquiv_symm, Perfection.lift_symm_apply, PerfectionMap.of, Perfection.coeff_pow_p, Perfection.coeff_iterate_frobenius', PerfectionMap.lift_apply, Perfection.coeff_pow_p', PreTilt.coeff_def, PerfectionMap.equiv_apply, Perfection.frobenius_pthRoot, Perfection.coeff_frobenius
perfectionSubring πŸ“–CompOpβ€”
perfectionSubsemiring πŸ“–CompOpβ€”

Tilt

Definitions

NameCategoryTheorems
instField πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
ModP πŸ“–CompOp
18 mathmath: PreTilt.valAux_eq, PreTilt.coeff_pow_p, PreTilt.mk_comp_untilt_eq_coeff_zero, PreTilt.coeff_frobeniusEquiv_symm, ModP.preVal_mul, PreTilt.coeff_frobenius, PreTilt.coeff_iterate_frobeniusEquiv_symm, WittVector.ghostComponentModPPow_teichmuller_coeff, ModP.preVal_zero, PreTilt.coeff_iterate_frobenius, ModP.nontrivial, ModP.preVal_add, ModP.preVal_eq_zero, PreTilt.mk_untilt_eq_coeff_zero, WittVector.mk_fontaineTheta, PreTilt.coeff_def, PreTilt.coeff_iterate_frobenius', ModP.charP
PerfectionMap πŸ“–CompData
3 mathmath: PerfectionMap.id, PerfectionMap.mk', PerfectionMap.of
PreTilt πŸ“–CompOp
29 mathmath: PreTilt.valAux_eq, WittVector.factorPowSucc_comp_fontaineThetaModPPow, PreTilt.coeff_pow_p, PreTilt.instPerfectRing, WittVector.factorPowSucc_fontaineThetaModPPow_eq, PreTilt.mk_comp_untilt_eq_coeff_zero, WittVector.mk_pow_fontaineTheta, PreTilt.coeff_frobeniusEquiv_symm, PreTilt.valAux_zero, PreTilt.coeff_frobenius, PreTilt.coeff_iterate_frobeniusEquiv_symm, PreTilt.valAux_mul, WittVector.fontaineThetaModPPow_teichmuller, PreTilt.isDomain, WittVector.ghostComponentModPPow_teichmuller_coeff, surjective_fontaineTheta, PreTilt.pow_dvd_one_untiltAux_sub_one, WittVector.fontaineTheta_teichmuller, PreTilt.valAux_add, PreTilt.coeff_iterate_frobenius, PreTilt.valAux_one, PreTilt.untilt_iterate_frobeniusEquiv_symm_pow, PreTilt.instCharP, PreTilt.map_eq_zero, PreTilt.pow_dvd_mul_untiltAux_sub_untiltAux_mul, PreTilt.mk_untilt_eq_coeff_zero, WittVector.mk_fontaineTheta, PreTilt.coeff_def, PreTilt.coeff_iterate_frobenius'
Tilt πŸ“–CompOpβ€”

---

← Back to Index