Documentation

Mathlib.RingTheory.Perfection

Ring Perfection and Tilt #

In this file we define the perfection of a ring of characteristic p, and the tilt of a field given a valuation to ā„ā‰„0.

TODO #

Define the valuation on the tilt, and define a characteristic predicate for the tilt.

def Monoid.perfection (M : Type u₁) [CommMonoid M] (p : ā„•) :
Submonoid (ā„• → M)

The perfection of a monoid M, defined to be the projective limit of M using the p-th power maps M → M indexed by the natural numbers, implemented as { f : ā„• → M | āˆ€ n, f (n + 1) ^ p = f n }.

Equations
    Instances For
      def Ring.perfectionSubsemiring (R : Type u₁) [CommSemiring R] (p : ā„•) [hp : Fact (Nat.Prime p)] [CharP R p] :
      Subsemiring (ā„• → R)

      The perfection of a ring R with characteristic p, as a subsemiring, defined to be the projective limit of R using the Frobenius maps R → R indexed by the natural numbers, implemented as { f : ā„• → R | āˆ€ n, f (n + 1) ^ p = f n }.

      Equations
        Instances For
          def Ring.perfectionSubring (R : Type u₁) [CommRing R] (p : ā„•) [hp : Fact (Nat.Prime p)] [CharP R p] :
          Subring (ā„• → R)

          The perfection of a ring R with characteristic p, as a subring, defined to be the projective limit of R using the Frobenius maps R → R indexed by the natural numbers, implemented as { f : ā„• → R | āˆ€ n, f (n + 1) ^ p = f n }.

          Equations
            Instances For
              def Ring.Perfection (R : Type u₁) [CommSemiring R] (p : ā„•) :
              Type u₁

              The perfection of a ring R with characteristic p, defined to be the projective limit of R using the Frobenius maps R → R indexed by the natural numbers, implemented as {f : ā„• → R // āˆ€ n, f (n + 1) ^ p = f n}.

              Equations
                Instances For
                  instance Perfection.commSemiring (R : Type u₁) [CommSemiring R] (p : ā„•) [hp : Fact (Nat.Prime p)] [CharP R p] :
                  Equations
                    instance Perfection.charP (R : Type u₁) [CommSemiring R] (p : ā„•) [hp : Fact (Nat.Prime p)] [CharP R p] :
                    instance Perfection.ring (p : ā„•) [hp : Fact (Nat.Prime p)] (R : Type u₁) [CommRing R] [CharP R p] :
                    Equations
                      instance Perfection.commRing (p : ā„•) [hp : Fact (Nat.Prime p)] (R : Type u₁) [CommRing R] [CharP R p] :
                      Equations
                        def Perfection.coeff (R : Type u₁) [CommSemiring R] (p : ā„•) [hp : Fact (Nat.Prime p)] [CharP R p] (n : ā„•) :

                        The n-th coefficient of an element of the perfection.

                        Equations
                          Instances For
                            theorem Perfection.ext {R : Type u₁} [CommSemiring R] {p : ā„•} [hp : Fact (Nat.Prime p)] [CharP R p] {f g : Ring.Perfection R p} (h : āˆ€ (n : ā„•), (coeff R p n) f = (coeff R p n) g) :
                            f = g
                            theorem Perfection.ext_iff {R : Type u₁} [CommSemiring R] {p : ā„•} [hp : Fact (Nat.Prime p)] [CharP R p] {f g : Ring.Perfection R p} :
                            f = g ↔ āˆ€ (n : ā„•), (coeff R p n) f = (coeff R p n) g

                            The p-th root of an element of the perfection.

                            Equations
                              Instances For
                                @[simp]
                                theorem Perfection.coeff_mk {R : Type u₁} [CommSemiring R] {p : ā„•} [hp : Fact (Nat.Prime p)] [CharP R p] (f : ā„• → R) (hf : āˆ€ (n : ā„•), f (n + 1) ^ p = f n) (n : ā„•) :
                                (coeff R p n) ⟨f, hf⟩ = f n
                                @[simp]
                                theorem Perfection.coeff_pthRoot {R : Type u₁} [CommSemiring R] {p : ā„•} [hp : Fact (Nat.Prime p)] [CharP R p] (f : Ring.Perfection R p) (n : ā„•) :
                                (coeff R p n) ((pthRoot R p) f) = (coeff R p (n + 1)) f
                                @[simp]
                                theorem Perfection.coeff_pow_p {R : Type u₁} [CommSemiring R] {p : ā„•} [hp : Fact (Nat.Prime p)] [CharP R p] (f : Ring.Perfection R p) (n : ā„•) :
                                (coeff R p (n + 1)) (f ^ p) = (coeff R p n) f
                                @[simp]
                                theorem Perfection.coeff_pow_p' {R : Type u₁} [CommSemiring R] {p : ā„•} [hp : Fact (Nat.Prime p)] [CharP R p] (f : Ring.Perfection R p) (n : ā„•) :
                                (coeff R p (n + 1)) f ^ p = (coeff R p n) f
                                @[simp]
                                theorem Perfection.coeff_frobenius {R : Type u₁} [CommSemiring R] {p : ā„•} [hp : Fact (Nat.Prime p)] [CharP R p] (f : Ring.Perfection R p) (n : ā„•) :
                                (coeff R p (n + 1)) ((frobenius (Ring.Perfection R p) p) f) = (coeff R p n) f
                                @[simp]
                                theorem Perfection.coeff_iterate_frobenius {R : Type u₁} [CommSemiring R] {p : ā„•} [hp : Fact (Nat.Prime p)] [CharP R p] (f : Ring.Perfection R p) (n m : ā„•) :
                                (coeff R p (n + m)) ((⇑(frobenius (Ring.Perfection R p) p))^[m] f) = (coeff R p n) f
                                theorem Perfection.coeff_iterate_frobenius' {R : Type u₁} [CommSemiring R] {p : ā„•} [hp : Fact (Nat.Prime p)] [CharP R p] (f : Ring.Perfection R p) (n m : ā„•) (hmn : m ≤ n) :
                                (coeff R p n) ((⇑(frobenius (Ring.Perfection R p) p))^[m] f) = (coeff R p (n - m)) f
                                theorem Perfection.coeff_add_ne_zero {R : Type u₁} [CommSemiring R] {p : ā„•} [hp : Fact (Nat.Prime p)] [CharP R p] {f : Ring.Perfection R p} {n : ā„•} (hfn : (coeff R p n) f ≠ 0) (k : ā„•) :
                                (coeff R p (n + k)) f ≠ 0
                                theorem Perfection.coeff_ne_zero_of_le {R : Type u₁} [CommSemiring R] {p : ā„•} [hp : Fact (Nat.Prime p)] [CharP R p] {f : Ring.Perfection R p} {m n : ā„•} (hfm : (coeff R p m) f ≠ 0) (hmn : m ≤ n) :
                                (coeff R p n) f ≠ 0
                                @[simp]
                                theorem Perfection.coeff_frobeniusEquiv_symm {R : Type u₁} [CommSemiring R] {p : ā„•} [hp : Fact (Nat.Prime p)] [CharP R p] (f : Ring.Perfection R p) (n : ā„•) :
                                (coeff R p n) ((frobeniusEquiv (Ring.Perfection R p) p).symm f) = (coeff R p (n + 1)) f
                                @[simp]
                                theorem Perfection.coeff_iterate_frobeniusEquiv_symm {R : Type u₁} [CommSemiring R] {p : ā„•} [hp : Fact (Nat.Prime p)] [CharP R p] (f : Ring.Perfection R p) (n m : ā„•) :
                                (coeff R p n) ((⇑(frobeniusEquiv (Ring.Perfection R p) p).symm)^[m] f) = (coeff R p (n + m)) f
                                theorem Perfection.coeff_surjective {R : Type u₁} [CommSemiring R] {p : ā„•} [hp : Fact (Nat.Prime p)] [CharP R p] (h : Function.Surjective ⇑(frobenius R p)) (n : ā„•) :
                                noncomputable def Perfection.lift (p : ā„•) [hp : Fact (Nat.Prime p)] (R : Type u₁) [CommSemiring R] [CharP R p] [PerfectRing R p] (S : Type uā‚‚) [CommSemiring S] [CharP S p] :

                                Given rings R and S of characteristic p, with R being perfect, any homomorphism R →+* S can be lifted to a homomorphism R →+* Perfection S p.

                                Equations
                                  Instances For
                                    @[simp]
                                    theorem Perfection.lift_apply_apply_coe (p : ā„•) [hp : Fact (Nat.Prime p)] (R : Type u₁) [CommSemiring R] [CharP R p] [PerfectRing R p] (S : Type uā‚‚) [CommSemiring S] [CharP S p] (f : R →+* S) (r : R) (n : ā„•) :
                                    ↑(((lift p R S) f) r) n = f ((⇑↑(frobeniusEquiv R p).symm)^[n] r)
                                    @[simp]
                                    theorem Perfection.lift_symm_apply (p : ā„•) [hp : Fact (Nat.Prime p)] (R : Type u₁) [CommSemiring R] [CharP R p] [PerfectRing R p] (S : Type uā‚‚) [CommSemiring S] [CharP S p] (f : R →+* Ring.Perfection S p) :
                                    (lift p R S).symm f = (coeff S p 0).comp f
                                    theorem Perfection.hom_ext (p : ā„•) [hp : Fact (Nat.Prime p)] {R : Type u₁} [CommSemiring R] [CharP R p] [PerfectRing R p] {S : Type uā‚‚} [CommSemiring S] [CharP S p] {f g : R →+* Ring.Perfection S p} (hfg : āˆ€ (x : R), (coeff S p 0) (f x) = (coeff S p 0) (g x)) :
                                    f = g
                                    def Perfection.map {R : Type u₁} [CommSemiring R] (p : ā„•) [hp : Fact (Nat.Prime p)] [CharP R p] {S : Type uā‚‚} [CommSemiring S] [CharP S p] (φ : R →+* S) :

                                    A ring homomorphism R →+* S induces Perfection R p →+* Perfection S p.

                                    Equations
                                      Instances For
                                        @[simp]
                                        theorem Perfection.map_apply_coe {R : Type u₁} [CommSemiring R] (p : ā„•) [hp : Fact (Nat.Prime p)] [CharP R p] {S : Type uā‚‚} [CommSemiring S] [CharP S p] (φ : R →+* S) (f : Ring.Perfection R p) (n : ā„•) :
                                        ↑((map p φ) f) n = φ ((coeff R p n) f)
                                        theorem Perfection.coeff_map {R : Type u₁} [CommSemiring R] (p : ā„•) [hp : Fact (Nat.Prime p)] [CharP R p] {S : Type uā‚‚} [CommSemiring S] [CharP S p] (φ : R →+* S) (f : Ring.Perfection R p) (n : ā„•) :
                                        (coeff S p n) ((map p φ) f) = φ ((coeff R p n) f)
                                        structure PerfectionMap (p : ā„•) [Fact (Nat.Prime p)] {R : Type u₁} [CommSemiring R] [CharP R p] {P : Type uā‚‚} [CommSemiring P] [CharP P p] [PerfectRing P p] (Ļ€ : P →+* R) :

                                        A perfection map to a ring of characteristic p is a map that is isomorphic to its perfection.

                                        Instances For
                                          theorem PerfectionMap.mk' {p : ā„•} [Fact (Nat.Prime p)] {R : Type u₁} [CommSemiring R] [CharP R p] {P : Type uā‚ƒ} [CommSemiring P] [CharP P p] [PerfectRing P p] {f : P →+* R} (g : P ā‰ƒ+* Ring.Perfection R p) (hfg : (Perfection.lift p P R) f = ↑g) :

                                          Create a PerfectionMap from an isomorphism to the perfection.

                                          theorem PerfectionMap.of (p : ā„•) [Fact (Nat.Prime p)] (R : Type u₁) [CommSemiring R] [CharP R p] :

                                          The canonical perfection map from the perfection of a ring.

                                          theorem PerfectionMap.id (p : ā„•) [Fact (Nat.Prime p)] (R : Type u₁) [CommSemiring R] [CharP R p] [PerfectRing R p] :

                                          For a perfect ring, it itself is the perfection.

                                          noncomputable def PerfectionMap.equiv {p : ā„•} [Fact (Nat.Prime p)] {R : Type u₁} [CommSemiring R] [CharP R p] {P : Type uā‚ƒ} [CommSemiring P] [CharP P p] [PerfectRing P p] {Ļ€ : P →+* R} (m : PerfectionMap p Ļ€) :

                                          A perfection map induces an isomorphism to the perfection.

                                          Equations
                                            Instances For
                                              theorem PerfectionMap.equiv_apply {p : ā„•} [Fact (Nat.Prime p)] {R : Type u₁} [CommSemiring R] [CharP R p] {P : Type uā‚ƒ} [CommSemiring P] [CharP P p] [PerfectRing P p] {Ļ€ : P →+* R} (m : PerfectionMap p Ļ€) (x : P) :
                                              m.equiv x = ((Perfection.lift p P R) π) x
                                              theorem PerfectionMap.comp_equiv {p : ā„•} [Fact (Nat.Prime p)] {R : Type u₁} [CommSemiring R] [CharP R p] {P : Type uā‚ƒ} [CommSemiring P] [CharP P p] [PerfectRing P p] {Ļ€ : P →+* R} (m : PerfectionMap p Ļ€) (x : P) :
                                              (Perfection.coeff R p 0) (m.equiv x) = π x
                                              theorem PerfectionMap.comp_equiv' {p : ā„•} [Fact (Nat.Prime p)] {R : Type u₁} [CommSemiring R] [CharP R p] {P : Type uā‚ƒ} [CommSemiring P] [CharP P p] [PerfectRing P p] {Ļ€ : P →+* R} (m : PerfectionMap p Ļ€) :
                                              (Perfection.coeff R p 0).comp ↑m.equiv = Ļ€
                                              theorem PerfectionMap.comp_symm_equiv {p : ā„•} [Fact (Nat.Prime p)] {R : Type u₁} [CommSemiring R] [CharP R p] {P : Type uā‚ƒ} [CommSemiring P] [CharP P p] [PerfectRing P p] {Ļ€ : P →+* R} (m : PerfectionMap p Ļ€) (f : Ring.Perfection R p) :
                                              π (m.equiv.symm f) = (Perfection.coeff R p 0) f
                                              theorem PerfectionMap.comp_symm_equiv' {p : ā„•} [Fact (Nat.Prime p)] {R : Type u₁} [CommSemiring R] [CharP R p] {P : Type uā‚ƒ} [CommSemiring P] [CharP P p] [PerfectRing P p] {Ļ€ : P →+* R} (m : PerfectionMap p Ļ€) :
                                              Ļ€.comp ↑m.equiv.symm = Perfection.coeff R p 0
                                              noncomputable def PerfectionMap.lift (p : ā„•) [Fact (Nat.Prime p)] (R : Type u₁) [CommSemiring R] [CharP R p] [PerfectRing R p] (S : Type uā‚‚) [CommSemiring S] [CharP S p] (P : Type uā‚ƒ) [CommSemiring P] [CharP P p] [PerfectRing P p] (Ļ€ : P →+* S) (m : PerfectionMap p Ļ€) :

                                              Given rings R and S of characteristic p, with R being perfect, any homomorphism R →+* S can be lifted to a homomorphism R →+* P, where P is any perfection of S.

                                              Equations
                                                Instances For
                                                  @[simp]
                                                  theorem PerfectionMap.lift_symm_apply (p : ā„•) [Fact (Nat.Prime p)] (R : Type u₁) [CommSemiring R] [CharP R p] [PerfectRing R p] (S : Type uā‚‚) [CommSemiring S] [CharP S p] (P : Type uā‚ƒ) [CommSemiring P] [CharP P p] [PerfectRing P p] (Ļ€ : P →+* S) (m : PerfectionMap p Ļ€) (f : R →+* P) :
                                                  (lift p R S P π m).symm f = π.comp f
                                                  @[simp]
                                                  theorem PerfectionMap.lift_apply (p : ā„•) [Fact (Nat.Prime p)] (R : Type u₁) [CommSemiring R] [CharP R p] [PerfectRing R p] (S : Type uā‚‚) [CommSemiring S] [CharP S p] (P : Type uā‚ƒ) [CommSemiring P] [CharP P p] [PerfectRing P p] (Ļ€ : P →+* S) (m : PerfectionMap p Ļ€) (f : R →+* S) :
                                                  (lift p R S P Ļ€ m) f = (↑m.equiv.symm).comp ((Perfection.lift p R S) f)
                                                  theorem PerfectionMap.hom_ext {p : ā„•} [Fact (Nat.Prime p)] {R : Type u₁} [CommSemiring R] [CharP R p] [PerfectRing R p] {S : Type uā‚‚} [CommSemiring S] [CharP S p] {P : Type uā‚ƒ} [CommSemiring P] [CharP P p] [PerfectRing P p] (Ļ€ : P →+* S) (m : PerfectionMap p Ļ€) {f g : R →+* P} (hfg : āˆ€ (x : R), Ļ€ (f x) = Ļ€ (g x)) :
                                                  f = g
                                                  noncomputable def PerfectionMap.map (p : ā„•) [Fact (Nat.Prime p)] {R : Type u₁} [CommSemiring R] [CharP R p] {P : Type uā‚ƒ} [CommSemiring P] [CharP P p] [PerfectRing P p] {S : Type uā‚‚} [CommSemiring S] [CharP S p] {Q : Type uā‚„} [CommSemiring Q] [CharP Q p] [PerfectRing Q p] {Ļ€ : P →+* R} :
                                                  PerfectionMap p Ļ€ → {σ : Q →+* S} → (n : PerfectionMap p σ) → (φ : R →+* S) → P →+* Q

                                                  A ring homomorphism R →+* S induces P →+* Q, a map of the respective perfections.

                                                  Equations
                                                    Instances For
                                                      theorem PerfectionMap.comp_map (p : ā„•) [Fact (Nat.Prime p)] {R : Type u₁} [CommSemiring R] [CharP R p] {P : Type uā‚ƒ} [CommSemiring P] [CharP P p] [PerfectRing P p] {S : Type uā‚‚} [CommSemiring S] [CharP S p] {Q : Type uā‚„} [CommSemiring Q] [CharP Q p] [PerfectRing Q p] {Ļ€ : P →+* R} (m : PerfectionMap p Ļ€) {σ : Q →+* S} (n : PerfectionMap p σ) (φ : R →+* S) :
                                                      σ.comp (map p m n φ) = φ.comp Ļ€
                                                      theorem PerfectionMap.map_map (p : ā„•) [Fact (Nat.Prime p)] {R : Type u₁} [CommSemiring R] [CharP R p] {P : Type uā‚ƒ} [CommSemiring P] [CharP P p] [PerfectRing P p] {S : Type uā‚‚} [CommSemiring S] [CharP S p] {Q : Type uā‚„} [CommSemiring Q] [CharP Q p] [PerfectRing Q p] {Ļ€ : P →+* R} (m : PerfectionMap p Ļ€) {σ : Q →+* S} (n : PerfectionMap p σ) (φ : R →+* S) (x : P) :
                                                      σ ((map p m n φ) x) = φ (Ļ€ x)
                                                      theorem PerfectionMap.map_eq_map (p : ā„•) [Fact (Nat.Prime p)] {R : Type u₁} [CommSemiring R] [CharP R p] {S : Type uā‚‚} [CommSemiring S] [CharP S p] (φ : R →+* S) :
                                                      map p ⋯ ⋯ φ = Perfection.map p φ
                                                      @[reducible, inline]
                                                      abbrev ModP (O : Type uā‚‚) [CommRing O] (p : ā„•) :
                                                      Type uā‚‚

                                                      O/(p) for O, ring of integers of K.

                                                      Equations
                                                        Instances For
                                                          instance ModP.commRing (O : Type uā‚‚) [CommRing O] (p : ā„•) :
                                                          Equations
                                                            instance ModP.charP (O : Type uā‚‚) [CommRing O] (p : ā„•) [Fact (Nat.Prime p)] [hvp : Fact ¬IsUnit ↑p] :
                                                            CharP (ModP O p) p
                                                            instance ModP.nontrivial (O : Type uā‚‚) [CommRing O] (p : ā„•) [hp : Fact (Nat.Prime p)] [Fact ¬IsUnit ↑p] :
                                                            noncomputable def ModP.preVal (K : Type u₁) [Field K] (v : Valuation K NNReal) (O : Type uā‚‚) [CommRing O] [Algebra O K] (p : ā„•) (x : ModP O p) :

                                                            For a field K with valuation v : K → ā„ā‰„0 and ring of integers O, a function O/(p) → ā„ā‰„0 that sends 0 to 0 and x + (p) to v(x) as long as x āˆ‰ (p).

                                                            Equations
                                                              Instances For
                                                                theorem ModP.preVal_zero {K : Type u₁} [Field K] {v : Valuation K NNReal} {O : Type uā‚‚} [CommRing O] [Algebra O K] {p : ā„•} :
                                                                preVal K v O p 0 = 0
                                                                theorem ModP.preVal_mk {K : Type u₁} [Field K] {v : Valuation K NNReal} {O : Type uā‚‚} [CommRing O] [Algebra O K] (hv : v.Integers O) {p : ā„•} {x : O} (hx : (Ideal.Quotient.mk (Ideal.span {↑p})) x ≠ 0) :
                                                                preVal K v O p ((Ideal.Quotient.mk (Ideal.span {↑p})) x) = v ((algebraMap O K) x)
                                                                theorem ModP.preVal_mul {K : Type u₁} [Field K] {v : Valuation K NNReal} {O : Type uā‚‚} [CommRing O] [Algebra O K] (hv : v.Integers O) {p : ā„•} {x y : ModP O p} (hxy0 : x * y ≠ 0) :
                                                                preVal K v O p (x * y) = preVal K v O p x * preVal K v O p y
                                                                theorem ModP.preVal_add {K : Type u₁} [Field K] {v : Valuation K NNReal} {O : Type uā‚‚} [CommRing O] [Algebra O K] (hv : v.Integers O) {p : ā„•} (x y : ModP O p) :
                                                                preVal K v O p (x + y) ≤ max (preVal K v O p x) (preVal K v O p y)
                                                                theorem ModP.v_p_lt_preVal {K : Type u₁} [Field K] {v : Valuation K NNReal} {O : Type uā‚‚} [CommRing O] [Algebra O K] (hv : v.Integers O) {p : ā„•} {x : ModP O p} :
                                                                v ↑p < preVal K v O p x ↔ x ≠ 0
                                                                theorem ModP.preVal_eq_zero {K : Type u₁} [Field K] {v : Valuation K NNReal} {O : Type uā‚‚} [CommRing O] [Algebra O K] (hv : v.Integers O) {p : ā„•} {x : ModP O p} :
                                                                preVal K v O p x = 0 ↔ x = 0
                                                                theorem ModP.v_p_lt_val {K : Type u₁} [Field K] {v : Valuation K NNReal} {O : Type uā‚‚} [CommRing O] [Algebra O K] (hv : v.Integers O) {p : ā„•} {x : O} :
                                                                v ↑p < v ((algebraMap O K) x) ↔ (Ideal.Quotient.mk (Ideal.span {↑p})) x ≠ 0
                                                                theorem ModP.mul_ne_zero_of_pow_p_ne_zero {K : Type u₁} [Field K] {v : Valuation K NNReal} {O : Type uā‚‚} [CommRing O] [Algebra O K] (hv : v.Integers O) {p : ā„•} [hp : Fact (Nat.Prime p)] {x y : ModP O p} (hx : x ^ p ≠ 0) (hy : y ^ p ≠ 0) :
                                                                x * y ≠ 0
                                                                def PreTilt (O : Type uā‚‚) [CommRing O] (p : ā„•) :
                                                                Type uā‚‚

                                                                Perfection of O/(p) where O is the ring of integers of K.

                                                                Equations
                                                                  Instances For
                                                                    instance PreTilt.instCommRing (O : Type uā‚‚) [CommRing O] (p : ā„•) [Fact (Nat.Prime p)] [Fact ¬IsUnit ↑p] :
                                                                    Equations
                                                                      instance PreTilt.instCharP (O : Type uā‚‚) [CommRing O] (p : ā„•) [Fact (Nat.Prime p)] [Fact ¬IsUnit ↑p] :
                                                                      CharP (PreTilt O p) p
                                                                      def PreTilt.coeff {O : Type uā‚‚} [CommRing O] {p : ā„•} [Fact (Nat.Prime p)] [Fact ¬IsUnit ↑p] (n : ā„•) :

                                                                      The n-th coefficient of an element of the perfection of O/(p).

                                                                      Equations
                                                                        Instances For
                                                                          theorem PreTilt.coeff_def {O : Type uā‚‚} [CommRing O] {p : ā„•} [Fact (Nat.Prime p)] [Fact ¬IsUnit ↑p] (n : ā„•) (x : PreTilt O p) :
                                                                          (coeff n) x = (Perfection.coeff (ModP O p) p n) x
                                                                          @[simp]
                                                                          theorem PreTilt.coeff_frobenius {O : Type uā‚‚} [CommRing O] {p : ā„•} [Fact (Nat.Prime p)] [Fact ¬IsUnit ↑p] (n : ā„•) (x : PreTilt O p) :
                                                                          (coeff (n + 1)) ((frobenius (PreTilt O p) p) x) = (coeff n) x
                                                                          @[simp]
                                                                          theorem PreTilt.coeff_iterate_frobenius {O : Type uā‚‚} [CommRing O] {p : ā„•} [Fact (Nat.Prime p)] [Fact ¬IsUnit ↑p] (m n : ā„•) (x : PreTilt O p) :
                                                                          (coeff (m + n)) ((⇑(frobenius (PreTilt O p) p))^[n] x) = (coeff m) x
                                                                          theorem PreTilt.coeff_iterate_frobenius' {O : Type uā‚‚} [CommRing O] {p : ā„•} [Fact (Nat.Prime p)] [Fact ¬IsUnit ↑p] (x : PreTilt O p) {m n : ā„•} (hmn : m ≤ n) :
                                                                          (coeff n) ((⇑(frobenius (PreTilt O p) p))^[m] x) = (coeff (n - m)) x

                                                                          A variant of PreTilt.coeff_iterate_frobenius using m-n and n.

                                                                          @[simp]
                                                                          theorem PreTilt.coeff_pow_p {O : Type uā‚‚} [CommRing O] {p : ā„•} [Fact (Nat.Prime p)] [Fact ¬IsUnit ↑p] (x : PreTilt O p) (n : ā„•) :
                                                                          (coeff (n + 1)) x ^ p = (coeff n) x
                                                                          @[simp]
                                                                          theorem PreTilt.coeff_frobeniusEquiv_symm {O : Type uā‚‚} [CommRing O] {p : ā„•} [Fact (Nat.Prime p)] [Fact ¬IsUnit ↑p] (n : ā„•) (x : PreTilt O p) :
                                                                          (coeff n) ((frobeniusEquiv (PreTilt O p) p).symm x) = (coeff (n + 1)) x
                                                                          @[simp]
                                                                          theorem PreTilt.coeff_iterate_frobeniusEquiv_symm {O : Type uā‚‚} [CommRing O] {p : ā„•} [Fact (Nat.Prime p)] [Fact ¬IsUnit ↑p] (m n : ā„•) (x : PreTilt O p) :
                                                                          (coeff m) ((⇑(frobeniusEquiv (PreTilt O p) p).symm)^[n] x) = (coeff (m + n)) x
                                                                          noncomputable def PreTilt.valAux (K : Type u₁) [Field K] (v : Valuation K NNReal) (O : Type uā‚‚) [CommRing O] [Algebra O K] (p : ā„•) [Fact (Nat.Prime p)] [Fact ¬IsUnit ↑p] (f : PreTilt O p) :

                                                                          The valuation Perfection(O/(p)) → ā„ā‰„0 as a function. Given f ∈ Perfection(O/(p)), if f = 0 then output 0; otherwise output preVal(f(n))^(p^n) for any n such that f(n) ≠ 0.

                                                                          Equations
                                                                            Instances For
                                                                              theorem PreTilt.coeff_nat_find_add_ne_zero {O : Type uā‚‚} [CommRing O] {p : ā„•} [Fact (Nat.Prime p)] [Fact ¬IsUnit ↑p] {f : PreTilt O p} {h : ∃ (n : ā„•), (coeff n) f ≠ 0} (k : ā„•) :
                                                                              (coeff (Nat.find h + k)) f ≠ 0
                                                                              theorem PreTilt.valAux_zero {K : Type u₁} [Field K] {v : Valuation K NNReal} {O : Type uā‚‚} [CommRing O] [Algebra O K] {p : ā„•} [Fact (Nat.Prime p)] [Fact ¬IsUnit ↑p] :
                                                                              valAux K v O p 0 = 0
                                                                              theorem PreTilt.valAux_eq {K : Type u₁} [Field K] {v : Valuation K NNReal} {O : Type uā‚‚} [CommRing O] [Algebra O K] (hv : v.Integers O) {p : ā„•} [Fact (Nat.Prime p)] [Fact ¬IsUnit ↑p] {f : PreTilt O p} {n : ā„•} (hfn : (coeff n) f ≠ 0) :
                                                                              valAux K v O p f = ModP.preVal K v O p ((coeff n) f) ^ p ^ n
                                                                              theorem PreTilt.valAux_one {K : Type u₁} [Field K] {v : Valuation K NNReal} {O : Type uā‚‚} [CommRing O] [Algebra O K] (hv : v.Integers O) {p : ā„•} [Fact (Nat.Prime p)] [Fact ¬IsUnit ↑p] :
                                                                              valAux K v O p 1 = 1
                                                                              theorem PreTilt.valAux_mul {K : Type u₁} [Field K] {v : Valuation K NNReal} {O : Type uā‚‚} [CommRing O] [Algebra O K] (hv : v.Integers O) {p : ā„•} [Fact (Nat.Prime p)] [Fact ¬IsUnit ↑p] (f g : PreTilt O p) :
                                                                              valAux K v O p (f * g) = valAux K v O p f * valAux K v O p g
                                                                              theorem PreTilt.valAux_add {K : Type u₁} [Field K] {v : Valuation K NNReal} {O : Type uā‚‚} [CommRing O] [Algebra O K] (hv : v.Integers O) {p : ā„•} [Fact (Nat.Prime p)] [Fact ¬IsUnit ↑p] (f g : PreTilt O p) :
                                                                              valAux K v O p (f + g) ≤ max (valAux K v O p f) (valAux K v O p g)
                                                                              noncomputable def PreTilt.val (K : Type u₁) [Field K] (v : Valuation K NNReal) (O : Type uā‚‚) [CommRing O] [Algebra O K] (hv : v.Integers O) (p : ā„•) [Fact (Nat.Prime p)] [Fact ¬IsUnit ↑p] :

                                                                              The valuation Perfection(O/(p)) → ā„ā‰„0. Given f ∈ Perfection(O/(p)), if f = 0 then output 0; otherwise output preVal(f(n))^(p^n) for any n such that f(n) ≠ 0.

                                                                              Equations
                                                                                Instances For
                                                                                  theorem PreTilt.map_eq_zero {K : Type u₁} [Field K] {v : Valuation K NNReal} {O : Type uā‚‚} [CommRing O] [Algebra O K] (hv : v.Integers O) {p : ā„•} [Fact (Nat.Prime p)] [Fact ¬IsUnit ↑p] {f : PreTilt O p} :
                                                                                  (val K v O hv p) f = 0 ↔ f = 0
                                                                                  theorem PreTilt.isDomain (K : Type u₁) [Field K] (v : Valuation K NNReal) (O : Type uā‚‚) [CommRing O] [Algebra O K] (hv : v.Integers O) (p : ā„•) [Fact (Nat.Prime p)] [Fact ¬IsUnit ↑p] :
                                                                                  def Tilt (K : Type u₁) [Field K] (v : Valuation K NNReal) (O : Type uā‚‚) [CommRing O] [Algebra O K] (hv : v.Integers O) (p : ā„•) [Fact (Nat.Prime p)] [hvp : Fact (v ↑p ≠ 1)] :
                                                                                  Type uā‚‚

                                                                                  The tilt of a field, as defined in Perfectoid Spaces by Peter Scholze, as in [scholze2011perfectoid]. Given a field K with valuation K → ā„ā‰„0 and ring of integers O, this is implemented as the fraction field of the perfection of O/(p).

                                                                                  Equations
                                                                                    Instances For
                                                                                      noncomputable instance Tilt.instField (K : Type u₁) [Field K] (v : Valuation K NNReal) (O : Type uā‚‚) [CommRing O] [Algebra O K] (hv : v.Integers O) (p : ā„•) [Fact (Nat.Prime p)] [hvp : Fact (v ↑p ≠ 1)] :
                                                                                      Field (Tilt K v O hv p)
                                                                                      Equations