Documentation Verification Report

StandardSmooth

πŸ“ Source: Mathlib/RingTheory/RingHom/StandardSmooth.lean

Statistics

MetricCount
DefinitionsIsStandardSmooth, IsStandardSmoothOfRelativeDimension
2
Theoremsexists_etale_mvPolynomial, comp, exists_etale_mvPolynomial, toAlgebra, algebraMap_isLocalizationAway, comp, equiv, exists_etale_mvPolynomial, id, isStandardSmooth, toAlgebra, isStandardSmoothOfRelativeDimension_algebraMap, isStandardSmoothOfRelativeDimension_holdsForLocalizationAway, isStandardSmoothOfRelativeDimension_isStableUnderBaseChange, isStandardSmoothOfRelativeDimension_localizationPreserves, isStandardSmoothOfRelativeDimension_respectsIso, isStandardSmoothOfRelativeDimension_stableUnderCompositionWithLocalizationAway, isStandardSmooth_algebraMap, isStandardSmooth_holdsForLocalizationAway, isStandardSmooth_isStableUnderBaseChange, isStandardSmooth_localizationPreserves, isStandardSmooth_respectsIso, isStandardSmooth_stableUnderComposition, isStandardSmooth_stableUnderCompositionWithLocalizationAway
24
Total26

Algebra.IsStandardSmoothOfRelativeDimension

Theorems

NameKindAssumesProvesValidatesDepends On
exists_etale_mvPolynomial πŸ“–mathematicalβ€”RingHom.Etale
MvPolynomial
CommRing.toCommSemiring
MvPolynomial.instCommRingMvPolynomial
AlgHom.toRingHom
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
β€”out
Subtype.finite
Nat.card_coe_set_eq
Set.ncard_compl
Set.toFinite
Set.ncard_range_of_injective
Algebra.Presentation.dimension.eq_1
MvPolynomial.isScalarTower
IsScalarTower.right
IsScalarTower.of_algebraMap_eq'
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp_algebraMap
IsScalarTower.to₁₂₄
Algebra.Generators.instIsScalarTowerRing
IsScalarTower.left
MvPolynomial.ringHom_ext'
RingHom.ext
MvPolynomial.iterToSum_X
MvPolynomial.rename_X
Algebra.Generators.algebraMap_apply
MvPolynomial.aeval_X
MvPolynomial.algHom_C
MvPolynomial.iterToSum_C_C
IsScalarTower.algebraMap_eq
MvPolynomial.iterToSum_C_X
Algebra.Generators.algebraMap_surjective
AlgEquiv.surjective
Set.range_comp
AlgEquivClass.toRingEquivClass
AlgEquiv.instAlgEquivClass
AlgEquiv.coe_ringEquiv
AlgEquiv.symm_toRingEquiv
Ideal.map_span
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
Algebra.Presentation.span_range_relation_eq_ker
Ideal.map_symm
RingHom.instRingHomClass
Algebra.PreSubmersivePresentation.jacobian_eq_jacobiMatrix_det
RingHom.map_det
Matrix.ext
Algebra.PreSubmersivePresentation.jacobiMatrix_apply
MvPolynomial.pderiv_sumToIter
MvPolynomial.iterToSum_sumToIter
MvPolynomial.pderiv_rename
Equiv.injective
MvPolynomial.rename_rename
Equiv.self_comp_symm
MvPolynomial.rename_id
Algebra.SubmersivePresentation.jacobian_isUnit
RingHom.etale_algebraMap
Algebra.Etale.iff_isStandardSmoothOfRelativeDimension_zero
Nat.card_eq_fintype_card
tsub_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub

RingHom

Definitions

NameCategoryTheorems
IsStandardSmooth πŸ“–MathDef
13 mathmath: IsStandardSmooth.comp, isStandardSmooth_stableUnderComposition, isStandardSmooth_localizationPreserves, isStandardSmooth_respectsIso, isStandardSmooth_holdsForLocalizationAway, smooth_iff_locally_isStandardSmooth, isStandardSmooth_algebraMap, isStandardSmooth_isStableUnderBaseChange, AlgebraicGeometry.Smooth.exists_isStandardSmooth, Smooth.locally_isStandardSmooth, IsStandardSmoothOfRelativeDimension.isStandardSmooth, isStandardSmooth_stableUnderCompositionWithLocalizationAway, AlgebraicGeometry.Smooth.iff_forall_exists_isStandardSmooth
IsStandardSmoothOfRelativeDimension πŸ“–MathDef
14 mathmath: IsStandardSmoothOfRelativeDimension.equiv, isStandardSmoothOfRelativeDimension_localizationPreserves, AlgebraicGeometry.SmoothOfRelativeDimension.exists_isStandardSmoothOfRelativeDimension, etale_iff_isStandardSmoothOfRelativeDimension_zero, AlgebraicGeometry.instHasRingHomPropertySmoothOfRelativeDimensionLocallyIsStandardSmoothOfRelativeDimension, IsStandardSmoothOfRelativeDimension.id, isStandardSmoothOfRelativeDimension_stableUnderCompositionWithLocalizationAway, isStandardSmoothOfRelativeDimension_algebraMap, IsStandardSmoothOfRelativeDimension.comp, isStandardSmoothOfRelativeDimension_respectsIso, AlgebraicGeometry.smoothOfRelativeDimension_iff, isStandardSmoothOfRelativeDimension_isStableUnderBaseChange, isStandardSmoothOfRelativeDimension_holdsForLocalizationAway, IsStandardSmoothOfRelativeDimension.algebraMap_isLocalizationAway

Theorems

NameKindAssumesProvesValidatesDepends On
isStandardSmoothOfRelativeDimension_algebraMap πŸ“–mathematicalβ€”IsStandardSmoothOfRelativeDimension
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.IsStandardSmoothOfRelativeDimension
β€”IsStandardSmoothOfRelativeDimension.eq_1
toAlgebra_algebraMap
isStandardSmoothOfRelativeDimension_holdsForLocalizationAway πŸ“–mathematicalβ€”HoldsForLocalizationAway
IsStandardSmoothOfRelativeDimension
β€”IsStandardSmoothOfRelativeDimension.algebraMap_isLocalizationAway
isStandardSmoothOfRelativeDimension_isStableUnderBaseChange πŸ“–mathematicalβ€”IsStableUnderBaseChange
IsStandardSmoothOfRelativeDimension
β€”isStandardSmoothOfRelativeDimension_respectsIso
IsScalarTower.Algebra.ext
Algebra.smul_def
IsStandardSmoothOfRelativeDimension.eq_1
Algebra.to_smulCommClass
Algebra.IsStandardSmoothOfRelativeDimension.baseChange
isStandardSmoothOfRelativeDimension_localizationPreserves πŸ“–mathematicalβ€”LocalizationPreserves
IsStandardSmoothOfRelativeDimension
β€”IsStableUnderBaseChange.localizationPreserves
isStandardSmoothOfRelativeDimension_isStableUnderBaseChange
isStandardSmoothOfRelativeDimension_respectsIso πŸ“–mathematicalβ€”RespectsIso
IsStandardSmoothOfRelativeDimension
β€”zero_add
IsStandardSmoothOfRelativeDimension.comp
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
IsStandardSmoothOfRelativeDimension.equiv
add_zero
isStandardSmoothOfRelativeDimension_stableUnderCompositionWithLocalizationAway πŸ“–mathematicalβ€”StableUnderCompositionWithLocalizationAway
IsStandardSmoothOfRelativeDimension
β€”IsStandardSmoothOfRelativeDimension.algebraMap_isLocalizationAway
IsStandardSmoothOfRelativeDimension.comp
add_zero
zero_add
isStandardSmooth_algebraMap πŸ“–mathematicalβ€”IsStandardSmooth
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.IsStandardSmooth
β€”IsStandardSmooth.eq_1
toAlgebra_algebraMap
isStandardSmooth_holdsForLocalizationAway πŸ“–mathematicalβ€”HoldsForLocalizationAway
IsStandardSmooth
β€”IsStandardSmoothOfRelativeDimension.isStandardSmooth
IsStandardSmoothOfRelativeDimension.algebraMap_isLocalizationAway
isStandardSmooth_isStableUnderBaseChange πŸ“–mathematicalβ€”IsStableUnderBaseChange
IsStandardSmooth
β€”isStandardSmooth_respectsIso
IsScalarTower.Algebra.ext
Algebra.smul_def
IsStandardSmooth.eq_1
Algebra.to_smulCommClass
Algebra.IsStandardSmooth.baseChange
isStandardSmooth_localizationPreserves πŸ“–mathematicalβ€”LocalizationPreserves
IsStandardSmooth
β€”IsStableUnderBaseChange.localizationPreserves
isStandardSmooth_isStableUnderBaseChange
isStandardSmooth_respectsIso πŸ“–mathematicalβ€”RespectsIso
IsStandardSmooth
β€”StableUnderComposition.respectsIso
isStandardSmooth_stableUnderComposition
IsStandardSmoothOfRelativeDimension.isStandardSmooth
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
IsStandardSmoothOfRelativeDimension.equiv
isStandardSmooth_stableUnderComposition πŸ“–mathematicalβ€”StableUnderComposition
IsStandardSmooth
β€”IsStandardSmooth.comp
isStandardSmooth_stableUnderCompositionWithLocalizationAway πŸ“–mathematicalβ€”StableUnderCompositionWithLocalizationAway
IsStandardSmooth
β€”StableUnderComposition.stableUnderCompositionWithLocalizationAway
isStandardSmooth_stableUnderComposition
isStandardSmooth_holdsForLocalizationAway

RingHom.IsStandardSmooth

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–mathematicalβ€”RingHom.IsStandardSmooth
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”eq_1
IsScalarTower.of_algebraMap_eq'
Algebra.IsStandardSmooth.trans
toAlgebra
exists_etale_mvPolynomial πŸ“–mathematicalβ€”RingHom.comp
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.C
RingHom.Etale
MvPolynomial.instCommRingMvPolynomial
β€”RingHom.IsStandardSmoothOfRelativeDimension.exists_etale_mvPolynomial
toAlgebra πŸ“–mathematicalβ€”Algebra.IsStandardSmooth
RingHom.toAlgebra
CommRing.toCommSemiring
β€”β€”

RingHom.IsStandardSmoothOfRelativeDimension

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_isLocalizationAway πŸ“–mathematicalβ€”RingHom.IsStandardSmoothOfRelativeDimension
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”IsScalarTower.Algebra.ext
Algebra.smul_def
eq_1
Algebra.IsStandardSmoothOfRelativeDimension.localization_away
comp πŸ“–mathematicalβ€”RingHom.IsStandardSmoothOfRelativeDimension
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”eq_1
IsScalarTower.of_algebraMap_eq'
Algebra.IsStandardSmoothOfRelativeDimension.trans
toAlgebra
equiv πŸ“–mathematicalβ€”RingHom.IsStandardSmoothOfRelativeDimension
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
β€”Algebra.IsStandardSmoothOfRelativeDimension.of_algebraMap_bijective
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.bijective
exists_etale_mvPolynomial πŸ“–mathematicalβ€”RingHom.comp
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.C
RingHom.Etale
MvPolynomial.instCommRingMvPolynomial
β€”Algebra.IsStandardSmoothOfRelativeDimension.exists_etale_mvPolynomial
toAlgebra
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp_algebraMap
id πŸ“–mathematicalβ€”RingHom.IsStandardSmoothOfRelativeDimension
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”Algebra.IsStandardSmoothOfRelativeDimension.id
isStandardSmooth πŸ“–mathematicalβ€”RingHom.IsStandardSmoothβ€”Algebra.IsStandardSmoothOfRelativeDimension.isStandardSmooth
toAlgebra
toAlgebra πŸ“–mathematicalβ€”Algebra.IsStandardSmoothOfRelativeDimension
RingHom.toAlgebra
CommRing.toCommSemiring
β€”β€”

---

← Back to Index