Standard smooth ring homomorphisms #
In this file we define standard smooth ring homomorphisms and show their meta properties.
Main definitions #
RingHom.IsStandardSmooth: A ring homomorphismR โ+* Sis standard smooth ifSis standard smooth asR-algebra.RingHom.IsStandardSmoothOfRelativeDimension n: A ring homomorphismR โ+* Sis standard smooth of relative dimensionnifSis standard smooth of relative dimensionnasR-algebra.
Notes #
This contribution was created as part of the AIM workshop "Formalizing algebraic geometry" in June 2024.
theorem
RingHom.IsStandardSmooth.toAlgebra
{R : Type u}
{S : Type v}
[CommRing R]
[CommRing S]
{f : R โ+* S}
(hf : f.IsStandardSmooth)
:
Helper lemma for the algebraize tactic
theorem
RingHom.IsStandardSmoothOfRelativeDimension.toAlgebra
(n : โ)
{R : Type u}
{S : Type v}
[CommRing R]
[CommRing S]
{f : R โ+* S}
(hf : IsStandardSmoothOfRelativeDimension n f)
:
Helper lemma for the algebraize tactic
theorem
RingHom.IsStandardSmoothOfRelativeDimension.isStandardSmooth
(n : โ)
{R : Type u}
{S : Type v}
[CommRing R]
[CommRing S]
(f : R โ+* S)
(hf : IsStandardSmoothOfRelativeDimension n f)
:
theorem
RingHom.IsStandardSmooth.comp
{R : Type u}
{S : Type v}
[CommRing R]
[CommRing S]
{T : Type u_1}
[CommRing T]
{g : S โ+* T}
{f : R โ+* S}
(hg : g.IsStandardSmooth)
(hf : f.IsStandardSmooth)
:
(g.comp f).IsStandardSmooth
theorem
RingHom.IsStandardSmoothOfRelativeDimension.comp
{n m : โ}
{R : Type u}
{S : Type v}
[CommRing R]
[CommRing S]
{T : Type u_1}
[CommRing T]
{g : S โ+* T}
{f : R โ+* S}
(hg : IsStandardSmoothOfRelativeDimension n g)
(hf : IsStandardSmoothOfRelativeDimension m f)
:
IsStandardSmoothOfRelativeDimension (n + m) (g.comp f)
theorem
RingHom.IsStandardSmoothOfRelativeDimension.algebraMap_isLocalizationAway
{R : Type u}
[CommRing R]
{Rแตฃ : Type u_2}
[CommRing Rแตฃ]
[Algebra R Rแตฃ]
(r : R)
[IsLocalization.Away r Rแตฃ]
:
IsStandardSmoothOfRelativeDimension 0 (algebraMap R Rแตฃ)
theorem
RingHom.isStandardSmooth_localizationPreserves :
LocalizationPreserves fun {R S : Type u_2} [CommRing R] [CommRing S] => IsStandardSmooth
theorem
RingHom.isStandardSmoothOfRelativeDimension_localizationPreserves
(n : โ)
:
LocalizationPreserves fun {R S : Type u_2} [CommRing R] [CommRing S] => IsStandardSmoothOfRelativeDimension n
theorem
RingHom.isStandardSmooth_holdsForLocalizationAway :
HoldsForLocalizationAway fun {R S : Type u_2} [CommRing R] [CommRing S] => IsStandardSmooth
theorem
RingHom.isStandardSmoothOfRelativeDimension_holdsForLocalizationAway :
HoldsForLocalizationAway fun {R S : Type u_2} [CommRing R] [CommRing S] => IsStandardSmoothOfRelativeDimension 0
theorem
RingHom.isStandardSmooth_stableUnderCompositionWithLocalizationAway :
StableUnderCompositionWithLocalizationAway fun {R S : Type u_2} [CommRing R] [CommRing S] => IsStandardSmooth
theorem
RingHom.isStandardSmoothOfRelativeDimension_stableUnderCompositionWithLocalizationAway
(n : โ)
:
StableUnderCompositionWithLocalizationAway fun {R S : Type u_2} [CommRing R] [CommRing S] =>
IsStandardSmoothOfRelativeDimension n
theorem
Algebra.IsStandardSmoothOfRelativeDimension.exists_etale_mvPolynomial
(n : โ)
(R : Type u)
(S : Type v)
[CommRing R]
[CommRing S]
[Algebra R S]
[IsStandardSmoothOfRelativeDimension n R S]
:
โ (g : MvPolynomial (Fin n) R โโ[R] S), g.Etale
Every standard smooth homomorphism R โ S factors into R -> R[Xโ,...,Xโ] โ S
where n is the relative dimension and R[Xโ,...,Xโ] โ S is etale.
theorem
RingHom.IsStandardSmoothOfRelativeDimension.exists_etale_mvPolynomial
{R : Type u}
{S : Type v}
[CommRing R]
[CommRing S]
{f : R โ+* S}
{n : โ}
(hf : IsStandardSmoothOfRelativeDimension n f)
:
โ (g : MvPolynomial (Fin n) R โ+* S), g.comp MvPolynomial.C = f โง g.Etale
Every standard smooth homomorphism R โ S factors into R -> R[Xโ,...,Xโ] โ S
where n is the relative dimension and R[Xโ,...,Xโ] โ S is etale.
theorem
RingHom.IsStandardSmooth.exists_etale_mvPolynomial
{R : Type u}
{S : Type v}
[CommRing R]
[CommRing S]
{f : R โ+* S}
(hf : f.IsStandardSmooth)
:
โ (n : โ) (g : MvPolynomial (Fin n) R โ+* S), g.comp MvPolynomial.C = f โง g.Etale