Documentation Verification Report

Complex

๐Ÿ“ Source: Mathlib/RingTheory/RootsOfUnity/Complex.lean

Statistics

MetricCount
Definitions0
Theoremscard_primitiveRoots, card_rootsOfUnity, conj_rootsOfUnity, isPrimitiveRoot_exp, isPrimitiveRoot_exp_of_coprime, isPrimitiveRoot_exp_of_isCoprime, isPrimitiveRoot_exp_rat, isPrimitiveRoot_exp_rat_of_even_num, isPrimitiveRoot_exp_rat_of_odd_num, isPrimitiveRoot_iff, mem_rootsOfUnity, norm_eq_one_of_mem_rootsOfUnity, arg, arg_eq_pi_iff, arg_eq_zero_iff, arg_ext, nnnorm_eq_one, norm'_eq_one
18
Total18

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
card_primitiveRoots ๐Ÿ“–mathematicalโ€”Finset.card
Complex
primitiveRoots
commRing
instIsDomain
Field.toSemifield
instField
Nat.totient
โ€”instIsDomain
primitiveRoots.congr_simp
primitiveRoots_zero
IsPrimitiveRoot.card_primitiveRoots
Nat.instAtLeastTwoHAddOfNat
isPrimitiveRoot_exp
card_rootsOfUnity ๐Ÿ“–mathematicalโ€”Fintype.card
Units
Complex
CommMonoid.toMonoid
CommRing.toCommMonoid
commRing
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
rootsOfUnity.fintype
instIsDomain
Field.toSemifield
instField
โ€”IsPrimitiveRoot.card_rootsOfUnity
instIsDomain
Nat.instAtLeastTwoHAddOfNat
isPrimitiveRoot_exp
conj_rootsOfUnity ๐Ÿ“–mathematicalUnits
Complex
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
Subgroup
CommMonoid.toMonoid
CommRing.toCommMonoid
commRing
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
Units.val
Units.instInv
โ€”Units.mul_eq_one_iff_eq_inv
conj_mul'
norm_eq_one_of_mem_rootsOfUnity
ofReal_one
one_pow
isPrimitiveRoot_exp ๐Ÿ“–mathematicalโ€”IsPrimitiveRoot
Complex
CommRing.toCommMonoid
commRing
exp
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
I
โ€”Nat.instAtLeastTwoHAddOfNat
Nat.cast_one
one_div
isPrimitiveRoot_exp_of_coprime
isPrimitiveRoot_exp_of_coprime ๐Ÿ“–mathematicalโ€”IsPrimitiveRoot
Complex
CommRing.toCommMonoid
commRing
exp
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
I
DivInvMonoid.toDiv
instDivInvMonoid
โ€”isPrimitiveRoot_exp_of_isCoprime
Nat.Coprime.isCoprime
isPrimitiveRoot_exp_of_isCoprime ๐Ÿ“–mathematicalIsCoprime
Int.instCommSemiring
IsPrimitiveRoot
Complex
CommRing.toCommMonoid
commRing
exp
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
I
DivInvMonoid.toDiv
instDivInvMonoid
instIntCast
โ€”Nat.instAtLeastTwoHAddOfNat
IsPrimitiveRoot.iff_def
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalโ‚ƒ
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_evalโ‚
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalโ‚
one_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalโ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.cons_zero_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
Mathlib.Meta.NormNum.isNat_eq_false
instCharZero
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
mul_div_cancel_leftโ‚€
EuclideanDomain.toMulDivCancelClass
IsCoprime.dvd_of_dvd_mul_right
IsCoprime.symm
dvd_mul_right
Int.cast_natCast
Mathlib.Tactic.FieldSimp.NF.div_eq_evalโ‚ƒ
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
isPrimitiveRoot_exp_rat ๐Ÿ“–mathematicalโ€”IsPrimitiveRoot
Complex
CommRing.toCommMonoid
commRing
exp
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
I
instRatCast
โ€”Nat.instAtLeastTwoHAddOfNat
Rat.num_div_den
Rat.cast_div
instCharZero
Rat.cast_intCast
Rat.cast_natCast
isPrimitiveRoot_exp_of_isCoprime
Int.isCoprime_iff_nat_coprime
isPrimitiveRoot_exp_rat_of_even_num ๐Ÿ“–mathematicalEvenIsPrimitiveRoot
Complex
CommRing.toCommMonoid
commRing
exp
instMul
ofReal
Real.pi
I
instRatCast
โ€”even_iff_exists_two_nsmul
Nat.instAtLeastTwoHAddOfNat
Rat.num_div_den
Int.nsmul_eq_mul
Int.cast_mul
Int.cast_ofNat
Rat.cast_div
instCharZero
Rat.cast_mul
Rat.cast_ofNat
Rat.cast_intCast
Rat.cast_natCast
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.mul_assoc_rev
add_zero
Int.cast_natCast
isPrimitiveRoot_exp_rat
isPrimitiveRoot_exp_rat_of_odd_num ๐Ÿ“–mathematicalOdd
Int.instSemiring
IsPrimitiveRoot
Complex
CommRing.toCommMonoid
commRing
exp
instMul
ofReal
Real.pi
I
instRatCast
โ€”Nat.instAtLeastTwoHAddOfNat
Rat.cast_div
instCharZero
Rat.cast_ofNat
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.one_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
Mathlib.Tactic.RingNF.mul_assoc_rev
add_zero
Rat.num_div_den
mul_comm
div_div
Int.cast_ofNat
Int.cast_natCast
Int.cast_mul
Nat.cast_ofNat
Nat.cast_mul
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
Nat.instCharZero
Odd.coprime_two_right
Odd.natAbs
isPrimitiveRoot_exp_rat
isPrimitiveRoot_iff ๐Ÿ“–mathematicalโ€”IsPrimitiveRoot
Complex
CommRing.toCommMonoid
commRing
exp
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
I
DivInvMonoid.toDiv
instDivInvMonoid
โ€”Nat.cast_zero
instCharZero
Nat.instAtLeastTwoHAddOfNat
IsPrimitiveRoot.eq_pow_of_pow_eq_one
instIsDomain
isPrimitiveRoot_exp
IsPrimitiveRoot.pow_eq_one
IsPrimitiveRoot.pow_iff_coprime
exp_nat_mul
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.one_mul
isPrimitiveRoot_exp_of_coprime
mem_rootsOfUnity ๐Ÿ“–mathematicalโ€”Units
Complex
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
Subgroup
CommMonoid.toMonoid
CommRing.toCommMonoid
commRing
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
exp
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
I
DivInvMonoid.toDiv
instDivInvMonoid
Units.val
โ€”Nat.instAtLeastTwoHAddOfNat
mem_rootsOfUnity
Units.ext_iff
Units.val_pow_eq_pow_val
Units.val_one
Nat.cast_zero
instCharZero
IsPrimitiveRoot.eq_pow_of_pow_eq_one
instIsDomain
isPrimitiveRoot_exp
exp_nat_mul
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.one_mul
exp_eq_one_iff
Int.cast_natCast
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalโ‚ƒ
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_evalโ‚
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalโ‚
one_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalโ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
Mathlib.Meta.NormNum.isNat_eq_false
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
norm_eq_one_of_mem_rootsOfUnity ๐Ÿ“–mathematicalUnits
Complex
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
Subgroup
CommMonoid.toMonoid
CommRing.toCommMonoid
commRing
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
Norm.norm
instNorm
Units.val
Real
Real.instOne
โ€”norm_eq_one_of_pow_eq_one
Nat.cast_one
mem_rootsOfUnity
Units.val_one

IsPrimitiveRoot

Theorems

NameKindAssumesProvesValidatesDepends On
arg ๐Ÿ“–mathematicalIsPrimitiveRoot
Complex
CommRing.toCommMonoid
Complex.commRing
Complex.arg
Real
Real.instMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instIntCast
Real.instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Real.pi
IsCoprime
Int.instCommSemiring
โ€”Nat.instAtLeastTwoHAddOfNat
Complex.isPrimitiveRoot_iff
mul_comm
mul_assoc
Complex.exp_mul_I
Int.cast_natCast
Complex.ofReal_mul
Complex.ofReal_div
Complex.arg_cos_add_sin_mul_I
LT.lt.trans_le
neg_lt_neg
Real.instIsOrderedAddMonoid
Real.pi_pos
neg_zero
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
Real.instZeroLEOneClass
Nat.cast_pos'
NeZero.charZero_one
RCLike.charZero_rclike
lt_of_le_of_ne'
zero_le
Nat.instCanonicallyOrderedAdd
le_of_lt
mul_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Eq.trans_le
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.mul_one
mul_le_of_le_one_right
LT.lt.le
div_le_iffโ‚€'
Nat.cast_zero
pos_of_gt
Nat.cast_one
mul_one
Complex.cos_sub_two_pi
Complex.sin_sub_two_pi
Int.cast_sub
Complex.ofReal_sub
sub_one_mul
sub_div
div_self
Complex.instCharZero
Mathlib.Tactic.FieldSimp.lt_eq_cancel_lt
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
LT.lt.ne'
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
one_mul
mul_neg
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.div_eq_evalโ‚
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalโ‚
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalโ‚ƒ
Mathlib.Tactic.FieldSimp.NF.cons_pos
zero_lt_one
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.FieldSimp.le_eq_cancel_le
PosMulStrictMono.toPosMulMono
Mathlib.Tactic.LinearCombination.lt_of_lt
Real.instIsOrderedCancelAddMonoid
Nat.cast_mul
Int.cast_mul
Int.cast_ofNat
Rat.cast_natCast
Rat.cast_mul
Mathlib.Tactic.LinearCombination.le_rearrange
Mathlib.Tactic.Ring.le_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
le_refl
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.LinearCombination.le_of_lt
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Mathlib.Tactic.LinearCombination.mul_const_lt
one_pos
Mathlib.Meta.NormNum.isNat_add
Nat.isCoprime_iff_coprime
mul_neg_one
sub_eq_add_neg
IsCoprime.add_mul_left_left
arg_eq_pi_iff ๐Ÿ“–mathematicalIsPrimitiveRoot
Complex
CommRing.toCommMonoid
Complex.commRing
Complex.arg
Real.pi
Complex.instNeg
Complex.instOne
โ€”arg_ext
neg_one
Complex.instNontrivial
CharP.ofCharZero
Complex.instCharZero
two_ne_zero
Complex.arg_neg_one
arg_eq_zero_iff ๐Ÿ“–mathematicalIsPrimitiveRoot
Complex
CommRing.toCommMonoid
Complex.commRing
Complex.arg
Real
Real.instZero
Complex.instOne
โ€”arg_ext
one
one_ne_zero
Complex.arg_one
arg_ext ๐Ÿ“–โ€”IsPrimitiveRoot
Complex
CommRing.toCommMonoid
Complex.commRing
Complex.arg
โ€”โ€”Complex.ext_norm_arg
norm'_eq_one
nnnorm_eq_one ๐Ÿ“–mathematicalIsPrimitiveRoot
Complex
CommRing.toCommMonoid
Complex.commRing
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
NNReal
instOneNNReal
โ€”norm'_eq_one
norm'_eq_one ๐Ÿ“–mathematicalIsPrimitiveRoot
Complex
CommRing.toCommMonoid
Complex.commRing
Norm.norm
Complex.instNorm
Real
Real.instOne
โ€”Complex.norm_eq_one_of_pow_eq_one
pow_eq_one

---

โ† Back to Index