Complex roots of unity #
In this file we show that the n-th complex roots of unity
are exactly the complex numbers exp (2 * Ο * I * (i / n)) for i β Finset.range n.
Main declarations #
Complex.mem_rootsOfUnity: the complexn-th roots of unity are exactly the complex numbers of the formexp (2 * Ο * I * (i / n))for somei < n.Complex.card_rootsOfUnity: the number ofn-th roots of unity is exactlyn.Complex.norm_rootOfUnity_eq_one: A complex root of unity has norm1.
theorem
IsPrimitiveRoot.norm'_eq_one
{ΞΆ : β}
{n : β}
(h : IsPrimitiveRoot ΞΆ n)
(hn : n β 0)
:
theorem
IsPrimitiveRoot.nnnorm_eq_one
{ΞΆ : β}
{n : β}
(h : IsPrimitiveRoot ΞΆ n)
(hn : n β 0)
:
theorem
IsPrimitiveRoot.arg_ext
{n m : β}
{ΞΆ ΞΌ : β}
(hΞΆ : IsPrimitiveRoot ΞΆ n)
(hΞΌ : IsPrimitiveRoot ΞΌ m)
(hn : n β 0)
(hm : m β 0)
(h : ΞΆ.arg = ΞΌ.arg)
:
theorem
IsPrimitiveRoot.arg_eq_zero_iff
{n : β}
{ΞΆ : β}
(hΞΆ : IsPrimitiveRoot ΞΆ n)
(hn : n β 0)
:
theorem
IsPrimitiveRoot.arg_eq_pi_iff
{n : β}
{ΞΆ : β}
(hΞΆ : IsPrimitiveRoot ΞΆ n)
(hn : n β 0)
:
theorem
Complex.conj_rootsOfUnity
{ΞΆ : βΛ£}
{n : β}
[NeZero n]
(hΞΆ : ΞΆ β rootsOfUnity n β)
: