Documentation Verification Report

Fiber

πŸ“ Source: Mathlib/RingTheory/Smooth/Fiber.lean

Statistics

MetricCount
DefinitionsFiber, Fiber, Fiber, Fiber
4
Theoremsof_formallyUnramified_of_flat, of_formallySmooth_residueField_tensor, of_isUnramifiedAt_of_flat, of_formallySmooth_fiber, of_formallySmooth_fiber
5
Total9

Algebra.Etale

Theorems

NameKindAssumesProvesValidatesDepends On
of_formallyUnramified_of_flat πŸ“–mathematicalβ€”Algebra.Etaleβ€”Algebra.Smooth.of_formallySmooth_fiber
Algebra.to_smulCommClass
Algebra.FormallyEtale.instFormallySmooth
Localization.AtPrime.isLocalRing
Algebra.FormallyEtale.of_formallyUnramified_of_field
Algebra.EssFiniteType.baseChange
Algebra.EssFiniteType.of_finiteType
Algebra.FiniteType.of_finitePresentation
Algebra.FormallyUnramified.base_change
Algebra.FormallyUnramified.subsingleton_kaehlerDifferential
Algebra.FormallySmooth.subsingleton_h1Cotangent
Algebra.Smooth.formallySmooth

Algebra.FormallySmooth

Theorems

NameKindAssumesProvesValidatesDepends On
of_formallySmooth_residueField_tensor πŸ“–mathematicalβ€”Algebra.FormallySmoothβ€”Algebra.to_smulCommClass
Algebra.FiniteType.iff_quotient_mvPolynomial''
Algebra.FiniteType.of_finitePresentation
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
OreLocalization.instIsScalarTower
IsScalarTower.right
Localization.isLocalization
IsLocalization.map_units
IsLocalization.exists_mk'_eq
Submonoid.instSubmonoidClass
IsLocalization.lift_mk'
Units.coe_liftRight
RingHom.instRingHomClass
Algebra.FinitePresentation.ker_fG_of_surjective
Algebra.FinitePresentation.mvPolynomial
Algebra.FinitePresentation.self
Finite.of_fintype
le_antisymm
IsLocalization.map_eq_zero_iff
IsLocalization.mk'_mem_map_algebraMap_iff
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
Ideal.map_le_iff_le_comap
IsLocalization.lift_eq
map_zero
MonoidWithZeroHomClass.toZeroHomClass
Ideal.FG.map
Algebra.FormallyEtale.of_isLocalization
comp
Algebra.mvPolynomial
instLocalization
inst
Module.Free.of_equiv
Algebra.TensorProduct.instFree
instFreeMvPolynomialKaehlerDifferential
IsScalarTower.of_algHom
KaehlerDifferential.finite
Algebra.instEssFiniteTypeLocalization
Algebra.EssFiniteType.of_finiteType
Algebra.FiniteType.instMvPolynomialOfFinite

Algebra.IsEtaleAt

Theorems

NameKindAssumesProvesValidatesDepends On
of_isUnramifiedAt_of_flat πŸ“–mathematicalβ€”Algebra.IsEtaleAtβ€”Algebra.exists_unramified_of_isUnramifiedAt
Algebra.FiniteType.of_finitePresentation
Algebra.Etale.of_formallyUnramified_of_flat
instFinitePresentationAway
Localization.flat
Algebra.Unramified.formallyUnramified
Algebra.basicOpen_subset_etaleLocus_iff
Algebra.Etale.formallyEtale

Algebra.IsSmoothAt

Theorems

NameKindAssumesProvesValidatesDepends On
of_formallySmooth_fiber πŸ“–mathematicalβ€”Algebra.IsSmoothAtβ€”Algebra.to_smulCommClass
OreLocalization.instIsScalarTower
IsScalarTower.right
Localization.isLocalization
AlgHom.map_algebraMap
IsLocalization.map_units
Ideal.over_def
Ideal.primeCompl.congr_simp
IsScalarTower.to₁₃₄
IsScalarTower.of_algHom
IsScalarTower.of_algebraMap_eq'
IsLocalization.ringHom_ext
Localization.AtPrime.instIsScalarTower
IsScalarTower.left
instIsScalarTowerLocalizationAlgebraMapSubmonoid
IsLocalization.isLocalization_of_submonoid_le
Algebra.IsPushout.symm
Algebra.isPushout_of_isLocalization
Algebra.FinitePresentation.equiv
Algebra.FinitePresentation.baseChange
Localization.AtPrime.isLocalRing
Algebra.TensorProduct.instSMulCommClassTensorProduct_1
Algebra.FormallySmooth.comp
TensorProduct.isScalarTower_left
Algebra.FormallySmooth.instTensorProduct
Algebra.FormallySmooth.instLocalization
Algebra.FormallySmooth.inst
AlgEquiv.map_mul'
AlgEquiv.map_add'
IsScalarTower.to_smulCommClass'
Algebra.TensorProduct.right_isScalarTower
IsLocalRing.instIsScalarTowerResidueField
OreLocalization.instSMulCommClass
TensorProduct.isScalarTower
IsScalarTower.to_smulCommClass
TensorProduct.CompatibleSMul.isScalarTower
IsLocalization.instCompatibleSMulLocalizationOfIsScalarTower_1
Ideal.ResidueField.algHom_ext
Algebra.ext_id
Algebra.FormallySmooth.of_equiv
Algebra.FormallySmooth.of_formallySmooth_residueField_tensor
instFlatAtPrime
instIsLocalHomAtPrimeRingHomAlgebraMap

Algebra.Smooth

Theorems

NameKindAssumesProvesValidatesDepends On
of_formallySmooth_fiber πŸ“–mathematicalAlgebra.FormallySmooth
Ideal.ResidueField
Ideal.Fiber
IsLocalRing.instCommRingResidueField
Localization.AtPrime
CommRing.toCommSemiring
OreLocalization.instCommRing
Ideal.primeCompl
CommSemiring.toSemiring
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
Algebra.TensorProduct.instCommRing
IsLocalRing.ResidueField.algebra
OreLocalization.instAlgebra
Algebra.id
Algebra.TensorProduct.leftAlgebra
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
Algebra.to_smulCommClass
IsLocalRing.ResidueField
Algebra.Smoothβ€”Algebra.to_smulCommClass
Algebra.smoothLocus_eq_univ_iff
Set.eq_univ_iff_forall
Algebra.IsSmoothAt.of_formallySmooth_fiber
Ideal.IsPrime.under
PrimeSpectrum.isPrime
Ideal.over_under

FiberBundleCore

Definitions

NameCategoryTheorems
Fiber πŸ“–CompOp
13 mathmath: mk_mem_localTrivAt_source, mem_localTrivAt_source, mem_localTrivAsPartialEquiv_source, localTriv_apply, mem_localTriv_source, localTrivAt_apply, localTrivAsPartialEquiv_apply, mem_localTrivAt_target, mem_localTrivAt_baseSet, localTrivAt_apply_mk, continuous_totalSpaceMk, localTriv_symm_apply, localTrivAt_snd

Function

Definitions

NameCategoryTheorems
Fiber πŸ“–CompOp
5 mathmath: TopologicalSpace.Fiber.sigmaIsoHom_inj, TopologicalSpace.Fiber.sigmaIsoHom_apply, TopologicalSpace.Fiber.instFiniteFiberCoeLocallyConstant, TopologicalSpace.Fiber.sigmaIsoHom_surj, CompHausLike.LocallyConstant.sigmaComparison_comp_sigmaIso

Ideal

Definitions

NameCategoryTheorems
Fiber πŸ“–CompOp
13 mathmath: PrimeSpectrum.preimageEquivFiber_symm_apply_coe, Polynomial.fiberEquivQuotient_tmul, instLiesOverFiberOfIsPrime, PrimeSpectrum.coe_preimageHomeomorphFiber_apply_asIdeal, PrimeSpectrum.coe_preimageOrderIsoFiber_symm_apply_coe_asIdeal, PrimeSpectrum.preimageEquivFiber_apply_asIdeal, Algebra.QuasiFinite.finite_fiber, PrimeSpectrum.coe_primesOverOrderIsoFiber_apply_asIdeal, PrimeSpectrum.coe_preimageOrderIsoFiber_apply_asIdeal, PrimeSpectrum.coe_preimageHomeomorphFiber_symm_apply_coe_asIdeal, PrimeSpectrum.coe_primesOverOrderIsoFiber_symm_apply_coe, Algebra.QuasiFinite.instIsArtinianRingFiber, Fiber.exists_smul_eq_one_tmul

VectorBundleCore

Definitions

NameCategoryTheorems
Fiber πŸ“–CompOp
17 mathmath: mem_localTriv_target, continuous_proj, localTriv_symm_fst, localTrivAt_apply, isOpenMap_proj, baseSet_at, mem_source_at, instContMDiffVectorBundle, localTriv_apply, localTrivAt_apply_mk, tangentBundleCore_localTriv_baseSet, inCoordinates_eq, trivializationAt, mem_localTriv_source, localTriv.isLinear, mem_localTrivAt_baseSet, vectorBundle

---

← Back to Index