Documentation

Mathlib.RingTheory.LocalRing.ResidueField.Fiber

The fiber of a ring homomorphism at a prime ideal #

Main results #

theorem Ideal.ResidueField.exists_smul_eq_tmul_one {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] (x : TensorProduct R S p.ResidueField) :
โˆƒ r โˆ‰ p, โˆƒ (s : S), r โ€ข x = s โŠ—โ‚œ[R] 1
@[reducible, inline]
abbrev Ideal.Fiber {R : Type u_1} [CommRing R] (p : Ideal R) [p.IsPrime] (S : Type u_3) [CommRing S] [Algebra R S] :
Type (max u_3 u_1)

The fiber of a prime p of R in an R-algebra S, defined to be ฮบ(p) โŠ— S.

See PrimeSpectrum.preimageHomeomorphFiber for the homeomorphism between the spectrum of it and the actual set-theoretic fiber of PrimeSpectrum S โ†’ PrimeSpectrum R at p.

Equations
    Instances For
      instance instLiesOverFiberOfIsPrime {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] (q : Ideal (p.Fiber S)) [q.IsPrime] :
      theorem Ideal.Fiber.exists_smul_eq_one_tmul {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] (x : p.Fiber S) :
      โˆƒ r โˆ‰ p, โˆƒ (s : S), r โ€ข x = 1 โŠ—โ‚œ[R] s
      noncomputable def PrimeSpectrum.preimageEquivFiber (R : Type u_1) (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (p : PrimeSpectrum R) :

      The fiber PrimeSpectrum S โ†’ PrimeSpectrum R at a prime ideal p : PrimeSpectrum R is in bijection with the prime spectrum of ฮบ(p) โŠ—[R] S.

      Equations
        Instances For
          noncomputable def PrimeSpectrum.preimageOrderIsoFiber (R : Type u_1) (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (p : PrimeSpectrum R) :

          The OrderIso between the fiber of PrimeSpectrum S โ†’ PrimeSpectrum R at a prime ideal p : PrimeSpectrum R and the prime spectrum of ฮบ(p) โŠ—[R] S.

          Equations
            Instances For
              @[deprecated PrimeSpectrum.preimageOrderIsoFiber (since := "2025-12-07")]

              Alias of PrimeSpectrum.preimageOrderIsoFiber.


              The OrderIso between the fiber of PrimeSpectrum S โ†’ PrimeSpectrum R at a prime ideal p : PrimeSpectrum R and the prime spectrum of ฮบ(p) โŠ—[R] S.

              Equations
                Instances For
                  noncomputable def PrimeSpectrum.primesOverOrderIsoFiber (R : Type u_3) (S : Type u_4) [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] :

                  The OrderIso between the set of primes lying over a prime ideal p : Ideal R, and the prime spectrum of ฮบ(p) โŠ—[R] S.

                  Equations
                    Instances For
                      @[simp]
                      theorem PrimeSpectrum.coe_primesOverOrderIsoFiber_apply_asIdeal (R : Type u_3) (S : Type u_4) [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] (aโœ : โ†‘(p.primesOver S)) :
                      โ†‘((primesOverOrderIsoFiber R S p) aโœ).asIdeal = โ‡‘(Algebra.TensorProduct.lift (Ideal.ResidueField.mapโ‚ p (โ†‘aโœ) (Algebra.ofId R S) โ‹ฏ) (IsScalarTower.toAlgHom R S (โ†‘aโœ).ResidueField) โ‹ฏ) โปยน' {0}
                      @[simp]
                      theorem PrimeSpectrum.coe_primesOverOrderIsoFiber_symm_apply_coe (R : Type u_3) (S : Type u_4) [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] (aโœ : PrimeSpectrum (p.Fiber S)) :
                      โ†‘โ†‘((RelIso.symm (primesOverOrderIsoFiber R S p)) aโœ) = โ‡‘Algebra.TensorProduct.includeRight โปยน' โ†‘aโœ.asIdeal

                      The Homeomorph between the fiber of PrimeSpectrum S โ†’ PrimeSpectrum R at a prime ideal p : PrimeSpectrum R and the prime spectrum of ฮบ(p) โŠ—[R] S.

                      Equations
                        Instances For