Documentation Verification Report

StandardSmoothCotangent

πŸ“ Source: Mathlib/RingTheory/Smooth/StandardSmoothCotangent.lean

Statistics

MetricCount
DefinitionsbasisCotangentAway, cMulXSubOneCotangent, cotangentComplexAux, basisCotangent, basisKaehler, basisKaehlerOfIsCompl, cotangentEquiv, sectionCotangent
8
TheoremsbasisCotangentAway_apply, cMulXSubOneCotangent_eq, free_kaehlerDifferential, subsingleton_h1Cotangent, subsingleton_kaehlerDifferential, iff_of_isStandardSmooth, rank_kaehlerDifferential, cotangentComplexAux_apply, cotangentComplexAux_zero_iff, basisCotangent_apply, basisCotangent_localizationAway_apply, basisKaehlerOfIsCompl_apply, basisKaehler_apply, cotangentComplexAux_injective, cotangentComplexAux_surjective, cotangentComplex_injective, cotangentEquiv_apply, free_cotangent, free_kaehlerDifferential, rank_kaehlerDifferential, sectionCotangent_comp, sectionCotangent_eq_iff, sectionCotangent_zero_of_notMem_range, subsingleton_h1Cotangent, instEtaleOfIsStandardSmoothOfRelativeDimensionOfNatNat, instFreeCotangentToExtensionUnitLocalizationAway, instSmoothOfIsStandardSmooth
27
Total35

Algebra

Theorems

NameKindAssumesProvesValidatesDepends On
instEtaleOfIsStandardSmoothOfRelativeDimensionOfNatNat πŸ“–mathematicalβ€”Etaleβ€”IsStandardSmoothOfRelativeDimension.isStandardSmooth
IsStandardSmoothOfRelationDimension.subsingleton_kaehlerDifferential
FormallyEtale.of_formallyUnramified_and_formallySmooth
Smooth.formallySmooth
instSmoothOfIsStandardSmooth
IsStandardSmooth.finitePresentation
instFreeCotangentToExtensionUnitLocalizationAway πŸ“–mathematicalβ€”Module.Free
Extension.Cotangent
Generators.toExtension
Generators.localizationAway
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Extension.instAddCommGroupCotangent
Extension.instModuleCotangent
id
β€”Finite.of_fintype
SubmersivePresentation.free_cotangent
instSmoothOfIsStandardSmooth πŸ“–mathematicalβ€”Smoothβ€”to_smulCommClass
formallySmooth_iff
Module.Projective.of_free
IsStandardSmooth.free_kaehlerDifferential
IsStandardSmooth.subsingleton_h1Cotangent
IsStandardSmooth.finitePresentation

Algebra.Generators

Definitions

NameCategoryTheorems
basisCotangentAway πŸ“–CompOp
1 mathmath: basisCotangentAway_apply
cMulXSubOneCotangent πŸ“–CompOp
4 mathmath: cotangentCompAwaySec_apply, cMulXSubOneCotangent_eq, Algebra.SubmersivePresentation.basisCotangent_localizationAway_apply, basisCotangentAway_apply

Theorems

NameKindAssumesProvesValidatesDepends On
basisCotangentAway_apply πŸ“–mathematicalβ€”DFunLike.coe
Module.Basis
Algebra.Extension.Cotangent
toExtension
localizationAway
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Algebra.Extension.instAddCommGroupCotangent
Algebra.Extension.instModuleCotangent
Algebra.id
Module.Basis.instFunLike
basisCotangentAway
cMulXSubOneCotangent
β€”Algebra.SubmersivePresentation.basisCotangent_apply
Finite.of_fintype
cMulXSubOneCotangent_eq πŸ“–mathematicalβ€”cMulXSubOneCotangent
DFunLike.coe
LinearMap
Algebra.Extension.Ring
toExtension
localizationAway
CommSemiring.toSemiring
CommRing.toCommSemiring
Algebra.Extension.commRing
RingHom.id
Semiring.toNonAssocSemiring
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Algebra.Extension.ker
Algebra.Extension.Cotangent
Submodule.addCommMonoid
AddCommGroup.toAddCommMonoid
Algebra.Extension.instAddCommGroupCotangent
Submodule.module
Algebra.Extension.instModuleCotangent
Algebra.Extension.algebraβ‚‚
LinearMap.instFunLike
MvPolynomial
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
RingHom
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.C
MvPolynomial.X
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
C_mul_X_sub_one_mem_ker
β€”β€”

Algebra.IsStandardSmooth

Theorems

NameKindAssumesProvesValidatesDepends On
free_kaehlerDifferential πŸ“–mathematicalβ€”Module.Free
KaehlerDifferential
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupKaehlerDifferential
KaehlerDifferential.module'
Algebra.id
Algebra.to_smulCommClass
β€”Algebra.to_smulCommClass
Algebra.SubmersivePresentation.free_kaehlerDifferential
subsingleton_h1Cotangent πŸ“–mathematicalβ€”Algebra.H1Cotangentβ€”Equiv.subsingleton
Algebra.Extension.instIsScalarTowerCotangent
IsScalarTower.right
RingHomInvPair.ids
Algebra.SubmersivePresentation.subsingleton_h1Cotangent

Algebra.IsStandardSmoothOfRelationDimension

Theorems

NameKindAssumesProvesValidatesDepends On
subsingleton_kaehlerDifferential πŸ“–mathematicalβ€”KaehlerDifferentialβ€”subsingleton_or_nontrivial
Module.subsingleton
Algebra.to_smulCommClass
Module.subsingleton_of_rank_zero
commRing_strongRankCondition
Algebra.IsStandardSmooth.free_kaehlerDifferential
Algebra.IsStandardSmoothOfRelativeDimension.isStandardSmooth
Algebra.IsStandardSmoothOfRelativeDimension.rank_kaehlerDifferential

Algebra.IsStandardSmoothOfRelativeDimension

Theorems

NameKindAssumesProvesValidatesDepends On
iff_of_isStandardSmooth πŸ“–mathematicalβ€”Algebra.IsStandardSmoothOfRelativeDimension
Module.rank
KaehlerDifferential
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupKaehlerDifferential
KaehlerDifferential.module'
Algebra.id
Algebra.to_smulCommClass
Cardinal
Cardinal.instNatCast
β€”Algebra.to_smulCommClass
rank_kaehlerDifferential
Nat.cast_injective
Cardinal.instCharZero
Algebra.SubmersivePresentation.rank_kaehlerDifferential
rank_kaehlerDifferential πŸ“–mathematicalβ€”Module.rank
KaehlerDifferential
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupKaehlerDifferential
KaehlerDifferential.module'
Algebra.id
Algebra.to_smulCommClass
Cardinal
Cardinal.instNatCast
β€”Algebra.to_smulCommClass
Algebra.SubmersivePresentation.rank_kaehlerDifferential

Algebra.PreSubmersivePresentation

Definitions

NameCategoryTheorems
cotangentComplexAux πŸ“–CompOp
6 mathmath: Algebra.SubmersivePresentation.cotangentComplexAux_injective, cotangentComplexAux_apply, cotangentComplexAux_zero_iff, Algebra.SubmersivePresentation.sectionCotangent_eq_iff, Algebra.SubmersivePresentation.cotangentComplexAux_surjective, Algebra.SubmersivePresentation.cotangentEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
cotangentComplexAux_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Algebra.Extension.Cotangent
Algebra.Generators.toExtension
Algebra.Presentation.toGenerators
toPresentation
AddCommGroup.toAddCommMonoid
Algebra.Extension.instAddCommGroupCotangent
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.Extension.instModuleCotangent
Algebra.id
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
cotangentComplexAux
Algebra.Extension.Ring
Algebra.Extension.commRing
Ideal
SetLike.instMembership
Submodule.setLike
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.Extension.ker
Submodule.addCommMonoid
Submodule.module
Algebra.Extension.algebraβ‚‚
AlgHom
MvPolynomial
MvPolynomial.commSemiring
MvPolynomial.algebra
AlgHom.funLike
MvPolynomial.aeval
Algebra.Generators.val
Derivation
MvPolynomial.module
Derivation.instFunLike
MvPolynomial.pderiv
map
Algebra.Generators.Ring
Algebra.Generators.ker
β€”Algebra.to_smulCommClass
smulCommClass_self
RingHomInvPair.ids
Algebra.Generators.cotangentSpaceBasis_repr_tmul
one_mul
cotangentComplexAux_zero_iff πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Algebra.Extension.Cotangent
Algebra.Generators.toExtension
Algebra.Presentation.toGenerators
toPresentation
AddCommGroup.toAddCommMonoid
Algebra.Extension.instAddCommGroupCotangent
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.Extension.instModuleCotangent
Algebra.id
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
cotangentComplexAux
Algebra.Extension.Ring
Algebra.Extension.commRing
Ideal
SetLike.instMembership
Submodule.setLike
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.Extension.ker
Submodule.addCommMonoid
Submodule.module
Algebra.Extension.algebraβ‚‚
Pi.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AlgHom
MvPolynomial
MvPolynomial.commSemiring
MvPolynomial.algebra
AlgHom.funLike
MvPolynomial.aeval
Algebra.Generators.val
Derivation
MvPolynomial.module
Derivation.instFunLike
MvPolynomial.pderiv
map
Algebra.Generators.Ring
Algebra.Generators.ker
β€”cotangentComplexAux_apply

Algebra.SubmersivePresentation

Definitions

NameCategoryTheorems
basisCotangent πŸ“–CompOp
2 mathmath: basisCotangent_localizationAway_apply, basisCotangent_apply
basisKaehler πŸ“–CompOp
1 mathmath: basisKaehler_apply
basisKaehlerOfIsCompl πŸ“–CompOp
1 mathmath: basisKaehlerOfIsCompl_apply
cotangentEquiv πŸ“–CompOp
1 mathmath: cotangentEquiv_apply
sectionCotangent πŸ“–CompOp
3 mathmath: sectionCotangent_eq_iff, sectionCotangent_comp, sectionCotangent_zero_of_notMem_range

Theorems

NameKindAssumesProvesValidatesDepends On
basisCotangent_apply πŸ“–mathematicalβ€”DFunLike.coe
Module.Basis
Algebra.Extension.Cotangent
Algebra.Generators.toExtension
Algebra.Presentation.toGenerators
Algebra.PreSubmersivePresentation.toPresentation
toPreSubmersivePresentation
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Algebra.Extension.instAddCommGroupCotangent
Algebra.Extension.instModuleCotangent
Algebra.id
Module.Basis.instFunLike
basisCotangent
LinearMap
Algebra.Extension.Ring
Algebra.Extension.commRing
RingHom.id
Semiring.toNonAssocSemiring
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Algebra.Extension.ker
Submodule.addCommMonoid
Submodule.module
Algebra.Extension.algebraβ‚‚
LinearMap.instFunLike
Algebra.Presentation.relation
Algebra.Presentation.relation_mem_ker
β€”Algebra.Presentation.relation_mem_ker
LinearEquiv.injective
RingHomInvPair.ids
LinearEquiv.apply_symm_apply
basisDeriv_apply
Algebra.PreSubmersivePresentation.cotangentComplexAux_apply
basisCotangent_localizationAway_apply πŸ“–mathematicalβ€”DFunLike.coe
Module.Basis
Algebra.Extension.Cotangent
Algebra.Generators.toExtension
Algebra.Presentation.toGenerators
Algebra.PreSubmersivePresentation.toPresentation
toPreSubmersivePresentation
Finite.of_fintype
PUnit.fintype
localizationAway
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Algebra.Extension.instAddCommGroupCotangent
Algebra.Extension.instModuleCotangent
Algebra.id
Module.Basis.instFunLike
basisCotangent
Algebra.Generators.cMulXSubOneCotangent
β€”basisCotangent_apply
Finite.of_fintype
basisKaehlerOfIsCompl_apply πŸ“–mathematicalIsCompl
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instBoundedOrder
Set.range
Algebra.PreSubmersivePresentation.map
toPreSubmersivePresentation
DFunLike.coe
Module.Basis
KaehlerDifferential
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupKaehlerDifferential
KaehlerDifferential.module'
Algebra.id
Algebra.to_smulCommClass
Module.Basis.instFunLike
basisKaehlerOfIsCompl
Derivation
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toModule
Derivation.instFunLike
KaehlerDifferential.D
Algebra.Generators.val
Algebra.Presentation.toGenerators
Algebra.PreSubmersivePresentation.toPresentation
β€”Algebra.to_smulCommClass
smulCommClass_self
sectionCotangent_comp
Module.Basis.ofSplitExact_apply
Algebra.Generators.toKaehler_cotangentSpaceBasis
basisKaehler_apply πŸ“–mathematicalβ€”DFunLike.coe
Module.Basis
Set.Elem
Compl.compl
Set
Set.instCompl
Set.range
Algebra.PreSubmersivePresentation.map
toPreSubmersivePresentation
KaehlerDifferential
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupKaehlerDifferential
KaehlerDifferential.module'
Algebra.id
Algebra.to_smulCommClass
Module.Basis.instFunLike
basisKaehler
Derivation
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toModule
Derivation.instFunLike
KaehlerDifferential.D
Algebra.Generators.val
Algebra.Presentation.toGenerators
Algebra.PreSubmersivePresentation.toPresentation
Set.instMembership
β€”Algebra.to_smulCommClass
smulCommClass_self
basisKaehlerOfIsCompl_apply
cotangentComplexAux_injective πŸ“–mathematicalβ€”Algebra.Extension.Cotangent
Algebra.Generators.toExtension
Algebra.Presentation.toGenerators
Algebra.PreSubmersivePresentation.toPresentation
toPreSubmersivePresentation
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
Algebra.Extension.instAddCommGroupCotangent
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.Extension.instModuleCotangent
Algebra.id
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
Algebra.PreSubmersivePresentation.cotangentComplexAux
β€”LinearMap.ker_eq_bot
eq_bot_iff
Algebra.Extension.Cotangent.mk_surjective
Submodule.mem_bot
Algebra.Extension.Cotangent.mk_eq_zero_iff
Algebra.Presentation.span_range_relation_eq_ker
Finsupp.mem_ideal_span_range_iff_exists_finsupp
Algebra.PreSubmersivePresentation.cotangentComplexAux_zero_iff
LinearMap.mem_ker
Finset.sum_apply
Finset.sum_congr
map_sum
Derivation.instAddMonoidHomClass
Derivation.leibniz
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
Algebra.Presentation.aeval_val_relation
MulZeroClass.zero_mul
add_zero
linearIndependent_aeval_val_pderiv_relation
linearIndependent_iff''
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
Ideal.sum_mem
pow_two
Ideal.mul_mem_mul
Algebra.Generators.ker_eq_ker_aeval_val
Algebra.Presentation.relation_mem_ker
cotangentComplexAux_surjective πŸ“–mathematicalβ€”Algebra.Extension.Cotangent
Algebra.Generators.toExtension
Algebra.Presentation.toGenerators
Algebra.PreSubmersivePresentation.toPresentation
toPreSubmersivePresentation
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
Algebra.Extension.instAddCommGroupCotangent
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.Extension.instModuleCotangent
Algebra.id
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
Algebra.PreSubmersivePresentation.cotangentComplexAux
β€”RingHomSurjective.ids
LinearMap.range_eq_top
eq_top_iff
Module.Basis.span_eq
Submodule.span_le
Algebra.Presentation.relation_mem_ker
Algebra.PreSubmersivePresentation.cotangentComplexAux_apply
basisDeriv_apply
cotangentComplex_injective πŸ“–mathematicalβ€”Algebra.Extension.Cotangent
Algebra.Generators.toExtension
Algebra.Presentation.toGenerators
Algebra.PreSubmersivePresentation.toPresentation
toPreSubmersivePresentation
Algebra.Extension.CotangentSpace
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
Algebra.Extension.instAddCommGroupCotangent
TensorProduct.addCommMonoid
Algebra.Extension.Ring
Algebra.Extension.commRing
KaehlerDifferential
Algebra.Extension.instRingOfIsScalarTower
Algebra.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instAddCommGroupKaehlerDifferential
Algebra.toModule
Algebra.Extension.algebraβ‚‚
KaehlerDifferential.module'
Algebra.Extension.instModuleCotangent
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
LinearMap.instFunLike
Algebra.Extension.cotangentComplex
β€”cotangentComplexAux_injective
Function.Injective.of_comp
Algebra.to_smulCommClass
cotangentEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Algebra.Extension.Cotangent
Algebra.Generators.toExtension
Algebra.Presentation.toGenerators
Algebra.PreSubmersivePresentation.toPresentation
toPreSubmersivePresentation
AddCommGroup.toAddCommMonoid
Algebra.Extension.instAddCommGroupCotangent
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.Extension.instModuleCotangent
Algebra.id
Pi.Function.module
Semiring.toModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
cotangentEquiv
LinearMap
LinearMap.instFunLike
Algebra.PreSubmersivePresentation.cotangentComplexAux
β€”RingHomInvPair.ids
free_cotangent πŸ“–mathematicalβ€”Module.Free
Algebra.Extension.Cotangent
Algebra.Generators.toExtension
Algebra.Presentation.toGenerators
Algebra.PreSubmersivePresentation.toPresentation
toPreSubmersivePresentation
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Algebra.Extension.instAddCommGroupCotangent
Algebra.Extension.instModuleCotangent
Algebra.id
β€”Module.Free.of_basis
free_kaehlerDifferential πŸ“–mathematicalβ€”Module.Free
KaehlerDifferential
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupKaehlerDifferential
KaehlerDifferential.module'
Algebra.id
Algebra.to_smulCommClass
β€”Module.Free.of_basis
Algebra.to_smulCommClass
rank_kaehlerDifferential πŸ“–mathematicalβ€”Module.rank
KaehlerDifferential
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupKaehlerDifferential
KaehlerDifferential.module'
Algebra.id
Algebra.to_smulCommClass
Cardinal
Cardinal.instNatCast
Algebra.Presentation.dimension
Algebra.PreSubmersivePresentation.toPresentation
toPreSubmersivePresentation
β€”Algebra.to_smulCommClass
Subtype.finite
rank_eq_card_basis
commRing_strongRankCondition
Finite.Set.finite_range
Fintype.card_compl_set
Set.card_range_of_injective
Nat.card_eq_fintype_card
sectionCotangent_comp πŸ“–mathematicalβ€”LinearMap.comp
Algebra.Extension.Cotangent
Algebra.Generators.toExtension
Algebra.Presentation.toGenerators
Algebra.PreSubmersivePresentation.toPresentation
toPreSubmersivePresentation
Algebra.Extension.CotangentSpace
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Algebra.Extension.instAddCommGroupCotangent
TensorProduct.addCommMonoid
Algebra.Extension.Ring
Algebra.Extension.commRing
KaehlerDifferential
Algebra.Extension.instRingOfIsScalarTower
Algebra.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instAddCommGroupKaehlerDifferential
Algebra.toModule
Algebra.Extension.algebraβ‚‚
KaehlerDifferential.module'
Algebra.Extension.instModuleCotangent
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
sectionCotangent
Algebra.Extension.cotangentComplex
LinearMap.id
β€”LinearMap.ext
Algebra.to_smulCommClass
RingHomCompTriple.ids
RingHomInvPair.ids
sectionCotangent_eq_iff
sectionCotangent_eq_iff πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Algebra.Extension.CotangentSpace
Algebra.Generators.toExtension
Algebra.Presentation.toGenerators
Algebra.PreSubmersivePresentation.toPresentation
toPreSubmersivePresentation
Algebra.Extension.Cotangent
TensorProduct.addCommMonoid
Algebra.Extension.Ring
Algebra.Extension.commRing
KaehlerDifferential
Algebra.Extension.instRingOfIsScalarTower
Algebra.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddCommGroup.toAddCommMonoid
instAddCommGroupKaehlerDifferential
Algebra.toModule
Algebra.Extension.algebraβ‚‚
KaehlerDifferential.module'
Algebra.Extension.instAddCommGroupCotangent
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
Algebra.Extension.instModuleCotangent
LinearMap.instFunLike
sectionCotangent
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finsupp.instFunLike
LinearEquiv
RingHomInvPair.ids
Finsupp.instAddCommMonoid
Finsupp.module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
Algebra.Generators.cotangentSpaceBasis
Algebra.PreSubmersivePresentation.map
Pi.addCommMonoid
Pi.Function.module
Algebra.PreSubmersivePresentation.cotangentComplexAux
β€”Algebra.to_smulCommClass
RingHomInvPair.ids
LinearEquiv.injective
LinearEquiv.apply_symm_apply
sectionCotangent_zero_of_notMem_range πŸ“–mathematicalSet
Set.instMembership
Set.range
Algebra.PreSubmersivePresentation.map
toPreSubmersivePresentation
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Algebra.Extension.CotangentSpace
Algebra.Generators.toExtension
Algebra.Presentation.toGenerators
Algebra.PreSubmersivePresentation.toPresentation
Algebra.Extension.Cotangent
TensorProduct.addCommMonoid
Algebra.Extension.Ring
Algebra.Extension.commRing
KaehlerDifferential
Algebra.Extension.instRingOfIsScalarTower
Algebra.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddCommGroup.toAddCommMonoid
instAddCommGroupKaehlerDifferential
Algebra.toModule
Algebra.Extension.algebraβ‚‚
KaehlerDifferential.module'
Algebra.Extension.instAddCommGroupCotangent
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
Algebra.Extension.instModuleCotangent
LinearMap.instFunLike
sectionCotangent
Module.Basis
Module.Basis.instFunLike
Algebra.Generators.cotangentSpaceBasis
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
Algebra.to_smulCommClass
RingHomInvPair.ids
Module.Basis.repr_self
Finsupp.single_apply
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
sectionCotangent_eq_iff
subsingleton_h1Cotangent πŸ“–mathematicalβ€”Algebra.Extension.H1Cotangent
Algebra.Generators.toExtension
Algebra.Presentation.toGenerators
Algebra.PreSubmersivePresentation.toPresentation
toPreSubmersivePresentation
β€”Algebra.to_smulCommClass
Algebra.Extension.subsingleton_h1Cotangent
cotangentComplex_injective

---

← Back to Index