Documentation

Mathlib.RingTheory.Smooth.StandardSmoothCotangent

Cotangent complex of a submersive presentation #

Let P be a submersive presentation of S as an R-algebra and denote by I the kernel R[X] → S. We show

We also provide the corresponding instances for standard smooth algebras as corollaries.

We keep the notation I = ker(R[X] → S) in all docstrings of this file.

noncomputable def Algebra.PreSubmersivePresentation.cotangentComplexAux {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : PreSubmersivePresentation R S ι σ) :

Given a pre-submersive presentation, this is the composition I ⧸ I ^ 2 → ⊕ S dxᵢ → ⊕ S dxᵢ where the second direct sum runs over all i : σ induced by the injection P.map : σ → ι.

If P is submersive, this is an isomorphism. See SubmersivePresentation.cotangentEquiv.

Equations
    Instances For
      noncomputable def Algebra.SubmersivePresentation.cotangentEquiv {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) :

      The isomorphism of S-modules between I ⧸ I ^ 2 and σ → S given by P.relation i ↦ ∂ⱼ (P.relation i).

      Equations
        Instances For
          @[simp]
          theorem Algebra.SubmersivePresentation.cotangentEquiv_apply {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) (a✝ : P.toExtension.Cotangent) (a✝¹ : σ) :
          P.cotangentEquiv a✝ a✝¹ = P.cotangentComplexAux a✝ a✝¹

          If P is a submersive presentation, of the associated cotangent complex vanishes.

          noncomputable def Algebra.SubmersivePresentation.basisCotangent {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) :

          The classes of P.relation i form a basis of I ⧸ I ^ 2.

          Equations
            Instances For
              noncomputable def Algebra.SubmersivePresentation.sectionCotangent {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) :

              If P is a submersive presentation, this is the section of the map I ⧸ I ^ 2 → ⊕ S dxᵢ given by projecting to the summands indexed by σ and composing with the inverse of P.cotangentEquiv.

              By SubmersivePresentation.sectionCotangent_comp this is indeed a section.

              Equations
                Instances For
                  theorem Algebra.SubmersivePresentation.sectionCotangent_zero_of_notMem_range {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) (i : ι) (hi : iSet.range P.map) :
                  noncomputable def Algebra.SubmersivePresentation.basisKaehlerOfIsCompl {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) {κ : Type u_5} {f : κι} (hf : Function.Injective f) (hcompl : IsCompl (Set.range f) (Set.range P.map)) :

                  Given a submersive presentation of S as R-algebra, any indexing type κ complementary to the σ in ι indexes a basis of Ω[S⁄R]. See SubmersivePresentation.basisKaehler for the special case κ = (Set.range P.map)ᶜ.

                  Equations
                    Instances For
                      @[simp]
                      theorem Algebra.SubmersivePresentation.basisKaehlerOfIsCompl_apply {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) {κ : Type u_5} {f : κι} (hf : Function.Injective f) (hcompl : IsCompl (Set.range f) (Set.range P.map)) (k : κ) :
                      (P.basisKaehlerOfIsCompl hf hcompl) k = (KaehlerDifferential.D R S) (P.val (f k))
                      noncomputable def Algebra.SubmersivePresentation.basisKaehler {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) :

                      Given a submersive presentation of S as R-algebra, the images of dxᵢ for i in the complement of σ in ι form a basis of Ω[S⁄R].

                      Equations
                        Instances For
                          @[simp]
                          theorem Algebra.SubmersivePresentation.basisKaehler_apply {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) (k : (Set.range P.map)) :
                          theorem Algebra.SubmersivePresentation.free_kaehlerDifferential {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : SubmersivePresentation R S ι σ) :

                          If P is a submersive presentation of S as an R-algebra, Ω[S⁄R] is free.

                          theorem Algebra.SubmersivePresentation.rank_kaehlerDifferential {R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] [Nontrivial S] [Finite ι] (P : SubmersivePresentation R S ι σ) :

                          If P is a submersive presentation of S as an R-algebra and S is nontrivial, Ω[S⁄R] is free of rank the dimension of P, i.e. the number of generators minus the number of relations.

                          @[reducible, inline]
                          noncomputable abbrev Algebra.Generators.cMulXSubOneCotangent {R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (r : R) [IsLocalization.Away r S] :

                          The image of g * X - 1 in I/I² if I is the kernel of the canonical presentation of the localization of S away from g.

                          Equations
                            Instances For

                              The basis of (g * X - 1) / (g * X - 1)² given by the image of g * X - 1.

                              This is def-eq to (SubmersivePresentation.localizationAway T g).basisCotangent, but

                              (SubmersivePresentation.localizationAway T g).toExtension =
                                (Generators.localizationAway T g).toExtension
                              

                              is not reducibly def-eq. Hence using the general SubmersivePresentation.basisCotangent leads to erw hell.

                              Equations
                                Instances For

                                  If S is R-standard smooth, Ω[S⁄R] is a free S-module.

                                  If S is non-trivial and R-standard smooth of relative dimension, Ω[S⁄R] is a free S-module of rank n.

                                  @[instance 900]
                                  instance Algebra.instSmoothOfIsStandardSmooth {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [IsStandardSmooth R S] :
                                  Smooth R S
                                  @[instance 900]

                                  If S is R-standard smooth of relative dimension zero, it is étale.