Documentation Verification Report

ConstructibleSet

📁 Source: Mathlib/RingTheory/Spectrum/Prime/ConstructibleSet.lean

Statistics

MetricCount
DefinitionsBasicConstructibleSetData, f, g, instDecidableEq, map, n, toSet, ConstructibleSetData, degBound, map, toSet
11
Theoremsext, ext_iff, map_comp, map_comp', map_f, map_g, map_id, map_id', map_n, toSet_map, isConstructible_toSet, map_comp, map_id, toSet_map, exists_constructibleSetData_iff, exists_range_eq_of_isConstructible, isClosed_of_stableUnderSpecialization_of_isConstructible, isOpen_of_stableUnderGeneralization_of_isConstructible
18
Total29

PrimeSpectrum

Definitions

NameCategoryTheorems
BasicConstructibleSetData 📖CompData
2 mathmath: BasicConstructibleSetData.map_comp', BasicConstructibleSetData.map_id'
ConstructibleSetData 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
exists_constructibleSetData_iff 📖mathematicalConstructibleSetData.toSet
Topology.IsConstructible
PrimeSpectrum
zariskiTopology
ConstructibleSetData.isConstructible_toSet
Topology.IsConstructible.induction_of_isTopologicalBasis
compactSpace
instQuasiSeparatedSpace
Zero.instNonempty
isTopologicalBasis_basic_opens
isCompact_basicOpen
Set.iUnion_congr_Prop
Set.iUnion_iUnion_eq_left
basicOpen_eq_zeroLocus_compl
Set.biUnion_of_singleton
compl_sdiff_compl
Set.ext
Equiv.exists_congr_right
Equiv.symm_apply_apply
Finset.coe_union
Set.biUnion_union
exists_range_eq_of_isConstructible 📖mathematicalTopology.IsConstructible
PrimeSpectrum
CommRing.toCommSemiring
zariskiTopology
Set.range
comap
exists_constructibleSetData_iff
Ideal.instIsTwoSided_1
iUnion_range_comap_comp_evalRingHom
Finite.of_fintype
ConstructibleSetData.toSet.eq_1
Set.iUnion_congr_Prop
Set.biUnion_eq_iUnion
Set.range_comp
localization_away_comap_range
Localization.isLocalization
continuous_comap
comap_basicOpen
TopologicalSpace.Opens.coe_comap
Set.image_preimage_eq_inter_range
RingHom.instRingHomClass
range_comap_of_surjective
Ideal.Quotient.mk_surjective
BasicConstructibleSetData.toSet.eq_1
Set.diff_eq_compl_inter
basicOpen_eq_zeroLocus_compl
Ideal.mk_ker
zeroLocus_span
isClosed_of_stableUnderSpecialization_of_isConstructible 📖mathematicalStableUnderSpecialization
PrimeSpectrum
CommRing.toCommSemiring
zariskiTopology
Topology.IsConstructible
IsClosedexists_range_eq_of_isConstructible
isClosed_range_of_stableUnderSpecialization
isOpen_of_stableUnderGeneralization_of_isConstructible 📖mathematicalStableUnderGeneralization
PrimeSpectrum
CommRing.toCommSemiring
zariskiTopology
Topology.IsConstructible
IsOpenisClosed_compl_iff
isClosed_of_stableUnderSpecialization_of_isConstructible
StableUnderGeneralization.compl
Topology.IsConstructible.compl

PrimeSpectrum.BasicConstructibleSetData

Definitions

NameCategoryTheorems
f 📖CompOp
2 mathmath: map_f, ext_iff
g 📖CompOp
2 mathmath: ext_iff, map_g
instDecidableEq 📖CompOp
map 📖CompOp
8 mathmath: map_comp', map_id, map_n, map_f, map_comp, map_g, toSet_map, map_id'
n 📖CompOp
4 mathmath: ChevalleyThm.chevalley_polynomialC, map_n, ext_iff, map_g
toSet 📖CompOp
1 mathmath: toSet_map

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖f
n
g
ext_iff 📖mathematicalf
n
g
ext
map_comp 📖mathematicalmap
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
map_comp' 📖mathematicalmap
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
PrimeSpectrum.BasicConstructibleSetData
map_comp
map_f 📖mathematicalf
map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
map_g 📖mathematicalg
map
n
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
map_id 📖mathematicalmap
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CompTriple.comp_eq
CompTriple.instId_comp
CompTriple.instIsIdId
map_id' 📖mathematicalmap
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
PrimeSpectrum.BasicConstructibleSetData
map_id
map_n 📖mathematicaln
map
toSet_map 📖mathematicaltoSet
map
Set.preimage
PrimeSpectrum
PrimeSpectrum.comap
PrimeSpectrum.preimage_comap_zeroLocus
Set.image_singleton

PrimeSpectrum.ConstructibleSetData

Definitions

NameCategoryTheorems
degBound 📖CompOp
1 mathmath: ChevalleyThm.chevalley_polynomialC
map 📖CompOp
3 mathmath: map_id, toSet_map, map_comp
toSet 📖CompOp
6 mathmath: ChevalleyThm.chevalley_polynomialC, chevalley_mvPolynomial_mvPolynomial, ChevalleyThm.chevalley_mvPolynomialC, isConstructible_toSet, PrimeSpectrum.exists_constructibleSetData_iff, toSet_map

Theorems

NameKindAssumesProvesValidatesDepends On
isConstructible_toSet 📖mathematicalTopology.IsConstructible
PrimeSpectrum
PrimeSpectrum.zariskiTopology
toSet
Topology.IsConstructible.biUnion
Finset.finite_toSet
Topology.IsConstructible.sdiff
Topology.isConstructible_compl
IsRetrocompact.isConstructible
IsClosed.isOpen_compl
PrimeSpectrum.isClosed_zeroLocus
PrimeSpectrum.isRetrocompact_zeroLocus_compl
Set.finite_range
Finite.of_fintype
Set.finite_singleton
map_comp 📖mathematicalmap
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
PrimeSpectrum.BasicConstructibleSetData.map_comp'
Finset.image_image
map_id 📖mathematicalmap
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
PrimeSpectrum.BasicConstructibleSetData.map_id'
Finset.image_id
toSet_map 📖mathematicaltoSet
map
Set.preimage
PrimeSpectrum
PrimeSpectrum.comap
Finset.set_biUnion_finset_image
Set.iUnion_congr_Prop
PrimeSpectrum.BasicConstructibleSetData.toSet_map
Set.preimage_iUnion

---

← Back to Index