Documentation

Mathlib.RingTheory.Spectrum.Prime.ConstructibleSet

Constructible sets in the prime spectrum #

This file provides tooling for manipulating constructible sets in the prime spectrum of a ring.

The data of a basic constructible set s is a tuple (f, gโ‚, ..., gโ‚™)

  • f : R

    Given the data of a basic constructible set s = V(gโ‚, ..., gโ‚™) \ V(f), return f.

  • Given the data of a basic constructible set s = V(gโ‚, ..., gโ‚™) \ V(f), return n.

  • g : Fin self.n โ†’ R

    Given the data of a basic constructible set s = V(gโ‚, ..., gโ‚™) \ V(f), return g.

Instances For
    theorem PrimeSpectrum.BasicConstructibleSetData.ext {R : Type u_1} {x y : BasicConstructibleSetData R} (f : x.f = y.f) (n : x.n = y.n) (g : x.g โ‰ y.g) :
    x = y

    Given the data of the constructible set s, build the data of the constructible set {I | {x | ฯ† x โˆˆ I} โˆˆ s}.

    Equations
      Instances For
        @[simp]
        theorem PrimeSpectrum.BasicConstructibleSetData.map_g {R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] (ฯ† : R โ†’+* S) (C : BasicConstructibleSetData R) (aโœ : Fin C.n) :
        (map ฯ† C).g aโœ = (โ‡‘ฯ† โˆ˜ C.g) aโœ
        @[simp]
        theorem PrimeSpectrum.BasicConstructibleSetData.map_f {R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] (ฯ† : R โ†’+* S) (C : BasicConstructibleSetData R) :
        (map ฯ† C).f = ฯ† C.f
        theorem PrimeSpectrum.BasicConstructibleSetData.map_comp {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommSemiring R] [CommSemiring S] [CommSemiring T] (ฯ† : S โ†’+* T) (ฯˆ : R โ†’+* S) (C : BasicConstructibleSetData R) :
        map (ฯ†.comp ฯˆ) C = map ฯ† (map ฯˆ C)
        theorem PrimeSpectrum.BasicConstructibleSetData.map_comp' {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommSemiring R] [CommSemiring S] [CommSemiring T] (ฯ† : S โ†’+* T) (ฯˆ : R โ†’+* S) :
        map (ฯ†.comp ฯˆ) = map ฯ† โˆ˜ map ฯˆ

        Given the data of a basic constructible set s, namely a tuple (f, gโ‚, ..., gโ‚™) such that s = V(gโ‚, ..., gโ‚™) \ V(f), return s.

        Equations
          Instances For
            @[reducible, inline]

            The data of a constructible set s in the prime spectrum of a ring is finitely many tuples (f, gโ‚, ..., gโ‚™) such that s = โ‹ƒ (f, gโ‚, ..., gโ‚™), V(gโ‚, ..., gโ‚™) \ V(f).

            To obtain s from its data, use PrimeSpectrum.ConstructibleSetData.toSet.

            Equations
              Instances For

                Given the data of the constructible set s, build the data of the constructible set {I | {x | f x โˆˆ I} โˆˆ s}.

                Equations
                  Instances For

                    Given the data of a constructible set s, namely finitely many tuples (f, gโ‚, ..., gโ‚™) such that s = โ‹ƒ (f, gโ‚, ..., gโ‚™), V(gโ‚, ..., gโ‚™) \ V(f), return s.

                    Equations
                      Instances For

                        The degree bound on a constructible set for Chevalley's theorem for the inclusion R โ†ช R[X].

                        Equations
                          Instances For
                            theorem PrimeSpectrum.exists_range_eq_of_isConstructible {R : Type u} [CommRing R] {s : Set (PrimeSpectrum R)} (hs : Topology.IsConstructible s) :
                            โˆƒ (S : Type u) (x : CommRing S) (f : R โ†’+* S), Set.range (comap f) = s

                            Stacks Tag 00F8 (without the finite presentation part)