| Name | Category | Theorems |
addCommGroup π | CompOp | 6 mathmath: subtype_injective, coe_subtype, subtypeMop_apply, coeAddMonoidHom_apply, subtypeMop_injective, subtype_apply
|
coeAddMonoidHom π | CompOp | 1 mathmath: coeAddMonoidHom_apply
|
coeOrderEmbedding π | CompOp | 1 mathmath: coeOrderEmbedding_apply
|
instAddSubtypeMem π | CompOp | β |
instNegSubtypeMem π | CompOp | β |
instPartialOrder π | CompOp | 36 mathmath: orderIsoRingCon_symm_apply, ringCon_le_iff, Ideal.instCanLiftTwoSidedIdealCoeOrderHomAsIdealIsTwoSided, span_mono, orderIsoRingCon_apply, MvPowerSeries.LinearTopology.basis_le_iff, instIsTwoSidedCoeOrderHomIdealAsIdeal, bot_asIdeal, orderIsoMatrix_apply_ringCon_r, Ideal.toTwoSided_asIdeal, orderIsoIsTwoSided_symm_apply, opOrderIso_symm_apply, RingEquiv.mapTwoSidedIdeal_symm, isSimpleRing_iff, asIdeal_jacobson, mem_fromIdeal, opOrderIso_apply, mem_comap, mem_asIdealOpposite, RingEquiv.mapTwoSidedIdeal_apply, le_iff, comap_comap, IsSimpleRing.simple, top_asIdeal, mem_asIdeal, Ideal.asIdeal_toTwoSided, orderIsoMatrix_symm_apply_ringCon_r, span_le, gc, matrix_monotone, coeOrderEmbedding_apply, lt_iff, orderIsoIsTwoSided_apply_coe, asIdeal_matrix, matrix_strictMono_of_nonempty, coe_asIdeal
|
instSMulIntSubtypeMem π | CompOp | β |
instSMulNatSubtypeMem π | CompOp | β |
instSubSubtypeMem π | CompOp | β |
instZeroSubtypeMem π | CompOp | β |
mk' π | CompOp | 2 mathmath: coe_mk', mem_mk'
|
op π | CompOp | 4 mathmath: mem_op_iff, opOrderIso_apply, op_ringCon, coe_op
|
opOrderIso π | CompOp | 2 mathmath: opOrderIso_symm_apply, opOrderIso_apply
|
orderIsoRingCon π | CompOp | 2 mathmath: orderIsoRingCon_symm_apply, orderIsoRingCon_apply
|
ringCon π | CompOp | 21 mathmath: ringCon_injective, ringCon_le_iff, orderIsoRingCon_apply, equivMatrix_symm_apply_ringCon, iSup_ringCon, iInf_ringCon, orderIsoMatrix_apply_ringCon_r, ker_ringCon, sInf_ringCon, op_ringCon, sSup_ringCon, rel_iff, orderIsoMatrix_symm_apply_ringCon_r, mem_iff, top_ringCon, sup_ringCon, bot_ringCon, matrix_ringCon, ker_ringCon_mk', inf_ringCon, unop_ringCon
|
setLike π | CompOp | 64 mathmath: mem_span_iff_mem_addSubgroup_closure_absorbing, one_mem_iff, instSMulCommClassMulOppositeSubtypeMem, one_mem, mem_span_iff_mem_addSubgroup_closure, mem_iInf, coe_top, isLinearTopology_iff_hasBasis_open_twoSidedIdeal, Ideal.mem_toTwoSided, mem_mk, mem_op_iff, MvPowerSeries.LinearTopology.mem_basis_iff, mem_matrix, IsLinearTopology.hasBasis_twoSidedIdeal, mem_inf, coe_mk', instNonUnitalSubringClassTwoSidedIdeal, mem_jacobson_iff, mem_fromIdeal, mem_comap, mem_asIdealOpposite, instSMulMemClass, IsSimpleRing.one_mem_of_ne_bot, mem_top, le_iff, subtype_injective, coe_equivMatrix_symm_apply, mem_compactlySupported, Ideal.coe_toTwoSided, coe_bot, ofCompactSupport_mem, mem_span_iff_mem_addSubgroup_closure_nonunital, rel_iff, mem_span_iff, coe_mk, mem_asIdeal, mem_sup, mem_iff, coe_subtype, span_le, ext_iff, subset_span, subtypeMop_apply, coeOrderEmbedding_apply, coeAddMonoidHom_apply, lt_iff, mem_ker, coe_unop, instSMulMemClassMulOpposite, coe_op, subtypeMop_injective, coe_smul, mem_unop_iff, isLinearTopology_iff_hasBasis_twoSidedIdeal, MvPowerSeries.LinearTopology.hasBasis_nhds_zero, subtype_apply, zero_mem, IsLinearTopology.hasBasis_open_twoSidedIdeal, coe_asIdeal, mem_mk', mem_bot, instAddSubgroupClass, coe_mop_smul, mem_sInf
|
unop π | CompOp | 4 mathmath: opOrderIso_symm_apply, coe_unop, mem_unop_iff, unop_ringCon
|