Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/TwoSidedIdeal/Basic.lean

Statistics

MetricCount
DefinitionsTwoSidedIdeal, addCommGroup, coeAddMonoidHom, coeOrderEmbedding, instAddSubtypeMem, instNegSubtypeMem, instPartialOrder, instSMulIntSubtypeMem, instSMulNatSubtypeMem, instSubSubtypeMem, instZeroSubtypeMem, mk', op, opOrderIso, orderIsoRingCon, ringCon, setLike, unop
18
Theoremsadd_mem, coeAddMonoidHom_apply, coeOrderEmbedding_apply, coe_mk, coe_mk', coe_op, coe_unop, ext, ext_iff, instAddSubgroupClass, instNontrivial, instSMulMemClass, instSMulMemClassMulOpposite, le_iff, lt_iff, mem_iff, mem_mk, mem_mk', mem_op_iff, mem_unop_iff, mul_mem_left, mul_mem_right, neg_mem, nsmul_mem, opOrderIso_apply, opOrderIso_symm_apply, op_ringCon, orderIsoRingCon_apply, orderIsoRingCon_symm_apply, rel_iff, ringCon_injective, ringCon_le_iff, sub_mem, unop_ringCon, zero_mem, zsmul_mem
36
Total54

TwoSidedIdeal

Definitions

NameCategoryTheorems
addCommGroup πŸ“–CompOp
6 mathmath: subtype_injective, coe_subtype, subtypeMop_apply, coeAddMonoidHom_apply, subtypeMop_injective, subtype_apply
coeAddMonoidHom πŸ“–CompOp
1 mathmath: coeAddMonoidHom_apply
coeOrderEmbedding πŸ“–CompOp
1 mathmath: coeOrderEmbedding_apply
instAddSubtypeMem πŸ“–CompOpβ€”
instNegSubtypeMem πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOp
36 mathmath: orderIsoRingCon_symm_apply, ringCon_le_iff, Ideal.instCanLiftTwoSidedIdealCoeOrderHomAsIdealIsTwoSided, span_mono, orderIsoRingCon_apply, MvPowerSeries.LinearTopology.basis_le_iff, instIsTwoSidedCoeOrderHomIdealAsIdeal, bot_asIdeal, orderIsoMatrix_apply_ringCon_r, Ideal.toTwoSided_asIdeal, orderIsoIsTwoSided_symm_apply, opOrderIso_symm_apply, RingEquiv.mapTwoSidedIdeal_symm, isSimpleRing_iff, asIdeal_jacobson, mem_fromIdeal, opOrderIso_apply, mem_comap, mem_asIdealOpposite, RingEquiv.mapTwoSidedIdeal_apply, le_iff, comap_comap, IsSimpleRing.simple, top_asIdeal, mem_asIdeal, Ideal.asIdeal_toTwoSided, orderIsoMatrix_symm_apply_ringCon_r, span_le, gc, matrix_monotone, coeOrderEmbedding_apply, lt_iff, orderIsoIsTwoSided_apply_coe, asIdeal_matrix, matrix_strictMono_of_nonempty, coe_asIdeal
instSMulIntSubtypeMem πŸ“–CompOpβ€”
instSMulNatSubtypeMem πŸ“–CompOpβ€”
instSubSubtypeMem πŸ“–CompOpβ€”
instZeroSubtypeMem πŸ“–CompOpβ€”
mk' πŸ“–CompOp
2 mathmath: coe_mk', mem_mk'
op πŸ“–CompOp
4 mathmath: mem_op_iff, opOrderIso_apply, op_ringCon, coe_op
opOrderIso πŸ“–CompOp
2 mathmath: opOrderIso_symm_apply, opOrderIso_apply
orderIsoRingCon πŸ“–CompOp
2 mathmath: orderIsoRingCon_symm_apply, orderIsoRingCon_apply
ringCon πŸ“–CompOp
21 mathmath: ringCon_injective, ringCon_le_iff, orderIsoRingCon_apply, equivMatrix_symm_apply_ringCon, iSup_ringCon, iInf_ringCon, orderIsoMatrix_apply_ringCon_r, ker_ringCon, sInf_ringCon, op_ringCon, sSup_ringCon, rel_iff, orderIsoMatrix_symm_apply_ringCon_r, mem_iff, top_ringCon, sup_ringCon, bot_ringCon, matrix_ringCon, ker_ringCon_mk', inf_ringCon, unop_ringCon
setLike πŸ“–CompOp
64 mathmath: mem_span_iff_mem_addSubgroup_closure_absorbing, one_mem_iff, instSMulCommClassMulOppositeSubtypeMem, one_mem, mem_span_iff_mem_addSubgroup_closure, mem_iInf, coe_top, isLinearTopology_iff_hasBasis_open_twoSidedIdeal, Ideal.mem_toTwoSided, mem_mk, mem_op_iff, MvPowerSeries.LinearTopology.mem_basis_iff, mem_matrix, IsLinearTopology.hasBasis_twoSidedIdeal, mem_inf, coe_mk', instNonUnitalSubringClassTwoSidedIdeal, mem_jacobson_iff, mem_fromIdeal, mem_comap, mem_asIdealOpposite, instSMulMemClass, IsSimpleRing.one_mem_of_ne_bot, mem_top, le_iff, subtype_injective, coe_equivMatrix_symm_apply, mem_compactlySupported, Ideal.coe_toTwoSided, coe_bot, ofCompactSupport_mem, mem_span_iff_mem_addSubgroup_closure_nonunital, rel_iff, mem_span_iff, coe_mk, mem_asIdeal, mem_sup, mem_iff, coe_subtype, span_le, ext_iff, subset_span, subtypeMop_apply, coeOrderEmbedding_apply, coeAddMonoidHom_apply, lt_iff, mem_ker, coe_unop, instSMulMemClassMulOpposite, coe_op, subtypeMop_injective, coe_smul, mem_unop_iff, isLinearTopology_iff_hasBasis_twoSidedIdeal, MvPowerSeries.LinearTopology.hasBasis_nhds_zero, subtype_apply, zero_mem, IsLinearTopology.hasBasis_open_twoSidedIdeal, coe_asIdeal, mem_mk', mem_bot, instAddSubgroupClass, coe_mop_smul, mem_sInf
unop πŸ“–CompOp
4 mathmath: opOrderIso_symm_apply, coe_unop, mem_unop_iff, unop_ringCon

Theorems

NameKindAssumesProvesValidatesDepends On
add_mem πŸ“–mathematicalTwoSidedIdeal
SetLike.instMembership
setLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
β€”add_zero
RingCon.add
coeAddMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
TwoSidedIdeal
SetLike.instMembership
setLike
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
addCommGroup
NonUnitalNonAssocRing.toAddCommGroup
AddMonoidHom.instFunLike
coeAddMonoidHom
β€”β€”
coeOrderEmbedding_apply πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
TwoSidedIdeal
Set
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Set.instLE
RelEmbedding.instFunLike
coeOrderEmbedding
SetLike.coe
setLike
β€”β€”
coe_mk πŸ“–mathematicalβ€”SetLike.coe
TwoSidedIdeal
setLike
setOf
DFunLike.coe
RingCon
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Distrib.toMul
RingCon.instFunLikeForallProp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”
coe_mk' πŸ“–mathematicalSet
Set.instMembership
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NonUnitalNonAssocRing.toAddCommGroup
Distrib.toMul
SetLike.coe
TwoSidedIdeal
setLike
mk'
β€”Set.ext
mem_mk'
coe_op πŸ“–mathematicalβ€”SetLike.coe
TwoSidedIdeal
MulOpposite
MulOpposite.instNonUnitalNonAssocRing
setLike
op
Set.preimage
MulOpposite.unop
β€”Set.ext
mem_op_iff
coe_unop πŸ“–mathematicalβ€”SetLike.coe
TwoSidedIdeal
setLike
unop
Set.preimage
MulOpposite
MulOpposite.op
MulOpposite.instNonUnitalNonAssocRing
β€”Set.ext
mem_unop_iff
ext πŸ“–β€”TwoSidedIdeal
SetLike.instMembership
setLike
β€”β€”RelEmbedding.injective
Set.ext
ext_iff πŸ“–mathematicalβ€”TwoSidedIdeal
SetLike.instMembership
setLike
β€”ext
instAddSubgroupClass πŸ“–mathematicalβ€”AddSubgroupClass
TwoSidedIdeal
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
setLike
β€”add_mem
zero_mem
neg_mem
instNontrivial πŸ“–mathematicalβ€”Nontrivial
TwoSidedIdeal
β€”RingCon.instNontrivial
Mathlib.Tactic.Contrapose.contraposeβ‚„
instSMulMemClass πŸ“–mathematicalβ€”SMulMemClass
TwoSidedIdeal
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
DistribSMul.toSMulZeroClass
instDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
setLike
β€”mul_mem_left
instSMulMemClassMulOpposite πŸ“–mathematicalβ€”SMulMemClass
TwoSidedIdeal
MulOpposite
SMulZeroClass.toSMul
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
SMulWithZero.toSMulZeroClass
MulOpposite.instZero
MulZeroClass.toOppositeSMulWithZero
setLike
β€”mul_mem_right
le_iff πŸ“–mathematicalβ€”TwoSidedIdeal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Set
Set.instHasSubset
SetLike.coe
setLike
β€”β€”
lt_iff πŸ“–mathematicalβ€”TwoSidedIdeal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Set
Set.instHasSSubset
SetLike.coe
setLike
β€”lt_iff_le_and_ne
Set.ssubset_iff_subset_ne
le_iff
instIsConcreteLE
mem_iff πŸ“–mathematicalβ€”TwoSidedIdeal
SetLike.instMembership
setLike
DFunLike.coe
RingCon
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Distrib.toMul
RingCon.instFunLikeForallProp
ringCon
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”
mem_mk πŸ“–mathematicalβ€”TwoSidedIdeal
SetLike.instMembership
setLike
DFunLike.coe
RingCon
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Distrib.toMul
RingCon.instFunLikeForallProp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”
mem_mk' πŸ“–mathematicalSet
Set.instMembership
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NonUnitalNonAssocRing.toAddCommGroup
Distrib.toMul
TwoSidedIdeal
SetLike.instMembership
setLike
mk'
β€”mem_iff
sub_zero
mem_op_iff πŸ“–mathematicalβ€”MulOpposite
TwoSidedIdeal
MulOpposite.instNonUnitalNonAssocRing
SetLike.instMembership
setLike
op
MulOpposite.unop
β€”Setoid.comm'
mem_unop_iff πŸ“–mathematicalβ€”TwoSidedIdeal
SetLike.instMembership
setLike
unop
MulOpposite
MulOpposite.instNonUnitalNonAssocRing
MulOpposite.op
β€”Setoid.comm'
mul_mem_left πŸ“–mathematicalTwoSidedIdeal
SetLike.instMembership
setLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
β€”MulZeroClass.mul_zero
RingCon.mul
RingCon.refl
mul_mem_right πŸ“–mathematicalTwoSidedIdeal
SetLike.instMembership
setLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
β€”MulZeroClass.zero_mul
RingCon.mul
RingCon.refl
neg_mem πŸ“–mathematicalTwoSidedIdeal
SetLike.instMembership
setLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NonUnitalNonAssocRing.toAddCommGroup
β€”neg_zero
RingCon.neg
nsmul_mem πŸ“–mathematicalTwoSidedIdeal
SetLike.instMembership
setLike
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
β€”nsmul_mem
AddSubgroupClass.toAddSubmonoidClass
instAddSubgroupClass
opOrderIso_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
TwoSidedIdeal
MulOpposite
MulOpposite.instNonUnitalNonAssocRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
RelIso.instFunLike
opOrderIso
op
β€”β€”
opOrderIso_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
TwoSidedIdeal
MulOpposite
MulOpposite.instNonUnitalNonAssocRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
RelIso.instFunLike
RelIso.symm
opOrderIso
unop
β€”β€”
op_ringCon πŸ“–mathematicalβ€”ringCon
MulOpposite
MulOpposite.instNonUnitalNonAssocRing
op
RingCon.op
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Distrib.toMul
β€”β€”
orderIsoRingCon_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
TwoSidedIdeal
RingCon
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Distrib.toMul
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
RingCon.instLE
RelIso.instFunLike
orderIsoRingCon
ringCon
β€”β€”
orderIsoRingCon_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
RingCon
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Distrib.toMul
TwoSidedIdeal
RingCon.instLE
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
RelIso.instFunLike
RelIso.symm
orderIsoRingCon
β€”β€”
rel_iff πŸ“–mathematicalβ€”DFunLike.coe
RingCon
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Distrib.toMul
RingCon.instFunLikeForallProp
ringCon
TwoSidedIdeal
SetLike.instMembership
setLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
β€”mem_iff
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isInt_neg
zero_add
Mathlib.Tactic.Abel.zero_termg
RingCon.sub
RingCon.refl
Mathlib.Tactic.Abel.term_add_constg
RingCon.add
ringCon_injective πŸ“–mathematicalβ€”TwoSidedIdeal
RingCon
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Distrib.toMul
ringCon
β€”β€”
ringCon_le_iff πŸ“–mathematicalβ€”TwoSidedIdeal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
RingCon
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Distrib.toMul
RingCon.instLE
ringCon
β€”RelIso.map_rel_iff
sub_mem πŸ“–mathematicalTwoSidedIdeal
SetLike.instMembership
setLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
β€”sub_mem
instAddSubgroupClass
unop_ringCon πŸ“–mathematicalβ€”ringCon
unop
RingCon.unop
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocRing.toAddCommGroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
MulOpposite
MulOpposite.instNonUnitalNonAssocRing
β€”β€”
zero_mem πŸ“–mathematicalβ€”TwoSidedIdeal
SetLike.instMembership
setLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
β€”RingCon.refl
zsmul_mem πŸ“–mathematicalTwoSidedIdeal
SetLike.instMembership
setLike
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
β€”zsmul_mem
instAddSubgroupClass

(root)

Definitions

NameCategoryTheorems
TwoSidedIdeal πŸ“–CompData
109 mathmath: TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure_absorbing, TwoSidedIdeal.orderIsoRingCon_symm_apply, TwoSidedIdeal.ringCon_injective, TwoSidedIdeal.one_mem_iff, TwoSidedIdeal.instSMulCommClassMulOppositeSubtypeMem, TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure, TwoSidedIdeal.mem_iInf, TwoSidedIdeal.ringCon_le_iff, Ideal.instCanLiftTwoSidedIdealCoeOrderHomAsIdealIsTwoSided, TwoSidedIdeal.span_mono, TwoSidedIdeal.orderIsoRingCon_apply, TwoSidedIdeal.equivMatrix_symm_apply_ringCon, TwoSidedIdeal.matrix_jacobson_bot, TwoSidedIdeal.coe_top, MvPowerSeries.LinearTopology.basis_le_iff, isLinearTopology_iff_hasBasis_open_twoSidedIdeal, Ideal.mem_toTwoSided, TwoSidedIdeal.instIsTwoSidedCoeOrderHomIdealAsIdeal, TwoSidedIdeal.iSup_ringCon, TwoSidedIdeal.mem_mk, TwoSidedIdeal.iInf_ringCon, TwoSidedIdeal.bot_asIdeal, compactlySupported_eq_top_of_isCompact, TwoSidedIdeal.equivMatrix_apply, TwoSidedIdeal.matrix_top, TwoSidedIdeal.orderIsoMatrix_apply_ringCon_r, Ideal.toTwoSided_asIdeal, TwoSidedIdeal.mem_op_iff, MvPowerSeries.LinearTopology.mem_basis_iff, TwoSidedIdeal.matrix_bot, TwoSidedIdeal.mem_matrix, IsLinearTopology.hasBasis_twoSidedIdeal, TwoSidedIdeal.orderIsoIsTwoSided_symm_apply, TwoSidedIdeal.mem_inf, TwoSidedIdeal.opOrderIso_symm_apply, TwoSidedIdeal.coe_mk', TwoSidedIdeal.instNontrivial, compactlySupported_eq_top, TwoSidedIdeal.ker_eq_bot, TwoSidedIdeal.sInf_ringCon, RingEquiv.mapTwoSidedIdeal_symm, instNonUnitalSubringClassTwoSidedIdeal, TwoSidedIdeal.mem_jacobson_iff, compactlySupported_eq_top_iff, isSimpleRing_iff, TwoSidedIdeal.asIdeal_jacobson, TwoSidedIdeal.mem_fromIdeal, TwoSidedIdeal.opOrderIso_apply, TwoSidedIdeal.mem_comap, TwoSidedIdeal.mem_asIdealOpposite, TwoSidedIdeal.instSMulMemClass, IsSimpleRing.one_mem_of_ne_bot, TwoSidedIdeal.mem_top, RingEquiv.mapTwoSidedIdeal_apply, TwoSidedIdeal.le_iff, TwoSidedIdeal.subtype_injective, TwoSidedIdeal.coe_equivMatrix_symm_apply, mem_compactlySupported, Ideal.coe_toTwoSided, TwoSidedIdeal.coe_bot, TwoSidedIdeal.sSup_ringCon, ofCompactSupport_mem, TwoSidedIdeal.comap_comap, IsSimpleRing.simple, TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure_nonunital, TwoSidedIdeal.rel_iff, TwoSidedIdeal.mem_span_iff, TwoSidedIdeal.coe_mk, TwoSidedIdeal.top_asIdeal, TwoSidedIdeal.mem_asIdeal, Ideal.asIdeal_toTwoSided, TwoSidedIdeal.orderIsoMatrix_symm_apply_ringCon_r, TwoSidedIdeal.mem_sup, TwoSidedIdeal.mem_iff, TwoSidedIdeal.top_ringCon, TwoSidedIdeal.coe_subtype, TwoSidedIdeal.sup_ringCon, TwoSidedIdeal.span_le, TwoSidedIdeal.ext_iff, TwoSidedIdeal.gc, TwoSidedIdeal.matrix_monotone, TwoSidedIdeal.subset_span, TwoSidedIdeal.subtypeMop_apply, TwoSidedIdeal.coeOrderEmbedding_apply, TwoSidedIdeal.coeAddMonoidHom_apply, TwoSidedIdeal.lt_iff, TwoSidedIdeal.mem_ker, TwoSidedIdeal.bot_ringCon, TwoSidedIdeal.coe_unop, TwoSidedIdeal.orderIsoIsTwoSided_apply_coe, TwoSidedIdeal.asIdeal_matrix, TwoSidedIdeal.instSMulMemClassMulOpposite, TwoSidedIdeal.coe_op, TwoSidedIdeal.subtypeMop_injective, TwoSidedIdeal.coe_smul, TwoSidedIdeal.mem_unop_iff, isLinearTopology_iff_hasBasis_twoSidedIdeal, TwoSidedIdeal.inf_ringCon, MvPowerSeries.LinearTopology.hasBasis_nhds_zero, TwoSidedIdeal.subtype_apply, TwoSidedIdeal.matrix_strictMono_of_nonempty, TwoSidedIdeal.zero_mem, IsLinearTopology.hasBasis_open_twoSidedIdeal, TwoSidedIdeal.coe_asIdeal, TwoSidedIdeal.mem_mk', TwoSidedIdeal.mem_bot, TwoSidedIdeal.instAddSubgroupClass, TwoSidedIdeal.coe_mop_smul, TwoSidedIdeal.mem_sInf

---

← Back to Index