Documentation

Mathlib.RingTheory.TwoSidedIdeal.Basic

Two Sided Ideals #

In this file, for any Ring R, we reinterpret I : RingCon R as a two-sided-ideal of a ring.

Main definitions and results #

structure TwoSidedIdeal (R : Type u_1) [NonUnitalNonAssocRing R] :
Type u_1

A two-sided ideal of a ring R is a subset of R that contains 0 and is closed under addition, negation, and absorbs multiplication on both sides.

  • ringCon : RingCon R

    every two-sided-ideal is induced by a congruence relation on the ring.

Instances For
    @[simp]
    theorem TwoSidedIdeal.mem_mk {R : Type u_1} [NonUnitalNonAssocRing R] {x : R} {c : RingCon R} :
    x โˆˆ { ringCon := c } โ†” c x 0
    @[simp]
    theorem TwoSidedIdeal.coe_mk {R : Type u_1} [NonUnitalNonAssocRing R] {c : RingCon R} :
    โ†‘{ ringCon := c } = {x : R | c x 0}

    the coercion from two-sided-ideals to sets is an order embedding

    Equations
      Instances For
        @[simp]
        theorem TwoSidedIdeal.coeOrderEmbedding_apply {R : Type u_1} [NonUnitalNonAssocRing R] (aโœ : TwoSidedIdeal R) :
        coeOrderEmbedding aโœ = โ†‘aโœ

        Two-sided-ideals corresponds to congruence relations on a ring.

        Equations
          Instances For
            @[simp]
            theorem TwoSidedIdeal.orderIsoRingCon_symm_apply {R : Type u_1} [NonUnitalNonAssocRing R] (ringCon : RingCon R) :
            (RelIso.symm orderIsoRingCon) ringCon = { ringCon := ringCon }
            theorem TwoSidedIdeal.ext {R : Type u_1} [NonUnitalNonAssocRing R] {I J : TwoSidedIdeal R} (h : โˆ€ (x : R), x โˆˆ I โ†” x โˆˆ J) :
            I = J
            theorem TwoSidedIdeal.add_mem {R : Type u_1} [NonUnitalNonAssocRing R] (I : TwoSidedIdeal R) {x y : R} (hx : x โˆˆ I) (hy : y โˆˆ I) :
            x + y โˆˆ I
            theorem TwoSidedIdeal.sub_mem {R : Type u_1} [NonUnitalNonAssocRing R] (I : TwoSidedIdeal R) {x y : R} (hx : x โˆˆ I) (hy : y โˆˆ I) :
            x - y โˆˆ I
            def TwoSidedIdeal.mk' {R : Type u_1} [NonUnitalNonAssocRing R] (carrier : Set R) (zero_mem : 0 โˆˆ carrier) (add_mem : โˆ€ {x y : R}, x โˆˆ carrier โ†’ y โˆˆ carrier โ†’ x + y โˆˆ carrier) (neg_mem : โˆ€ {x : R}, x โˆˆ carrier โ†’ -x โˆˆ carrier) (mul_mem_left : โˆ€ {x y : R}, y โˆˆ carrier โ†’ x * y โˆˆ carrier) (mul_mem_right : โˆ€ {x y : R}, x โˆˆ carrier โ†’ x * y โˆˆ carrier) :

            The "set-theoretic-way" of constructing a two-sided ideal by providing:

            • the underlying set S;
            • a proof that 0 โˆˆ S;
            • a proof that x + y โˆˆ S if x โˆˆ S and y โˆˆ S;
            • a proof that -x โˆˆ S if x โˆˆ S;
            • a proof that x * y โˆˆ S if y โˆˆ S;
            • a proof that x * y โˆˆ S if x โˆˆ S.
            Equations
              Instances For
                @[simp]
                theorem TwoSidedIdeal.mem_mk' {R : Type u_1} [NonUnitalNonAssocRing R] (carrier : Set R) (zero_mem : 0 โˆˆ carrier) (add_mem : โˆ€ {x y : R}, x โˆˆ carrier โ†’ y โˆˆ carrier โ†’ x + y โˆˆ carrier) (neg_mem : โˆ€ {x : R}, x โˆˆ carrier โ†’ -x โˆˆ carrier) (mul_mem_left : โˆ€ {x y : R}, y โˆˆ carrier โ†’ x * y โˆˆ carrier) (mul_mem_right : โˆ€ {x y : R}, x โˆˆ carrier โ†’ x * y โˆˆ carrier) (x : R) :
                x โˆˆ mk' carrier zero_mem add_mem neg_mem mul_mem_left mul_mem_right โ†” x โˆˆ carrier
                @[simp]
                theorem TwoSidedIdeal.coe_mk' {R : Type u_1} [NonUnitalNonAssocRing R] (carrier : Set R) (zero_mem : 0 โˆˆ carrier) (add_mem : โˆ€ {x y : R}, x โˆˆ carrier โ†’ y โˆˆ carrier โ†’ x + y โˆˆ carrier) (neg_mem : โˆ€ {x : R}, x โˆˆ carrier โ†’ -x โˆˆ carrier) (mul_mem_left : โˆ€ {x y : R}, y โˆˆ carrier โ†’ x * y โˆˆ carrier) (mul_mem_right : โˆ€ {x y : R}, x โˆˆ carrier โ†’ x * y โˆˆ carrier) :
                โ†‘(mk' carrier zero_mem add_mem neg_mem mul_mem_left mul_mem_right) = carrier

                The coercion into the ring as a AddMonoidHom

                Equations
                  Instances For
                    @[simp]
                    theorem TwoSidedIdeal.coeAddMonoidHom_apply {R : Type u_1} [NonUnitalNonAssocRing R] (I : TwoSidedIdeal R) (self : โ†ฅI) :
                    I.coeAddMonoidHom self = โ†‘self

                    If I is a two-sided ideal of R, then {op x | x โˆˆ I} is a two-sided ideal in Rแตแต’แต–.

                    Equations
                      Instances For

                        If I is a two-sided ideal of Rแตแต’แต–, then {x.unop | x โˆˆ I} is a two-sided ideal in R.

                        Equations
                          Instances For

                            Two-sided-ideals of A and that of Aแต’แต– corresponds bijectively to each other.

                            Equations
                              Instances For