Documentation Verification Report

LocalSubring

πŸ“ Source: Mathlib/RingTheory/Valuation/LocalSubring.lean

Statistics

MetricCount
DefinitionsLocalSubring, toLocalSubring
2
Theoremsimage_subset_nonunits_valuationSubring, exists_factor_valuationRing, eq_iInf_of_isIntegrallyClosedIn, exists_le_valuationSubring, exists_le_valuationSubring_of_isIntegrallyClosedIn, exists_valuationRing_of_isMax, isMax_iff, map_maximalIdeal_eq_top_of_isMax, mem_of_isMax_of_isIntegral, eq_iInf_of_isIntegrallyClosedIn, exists_le_valuationSubring_of_isIntegrallyClosedIn, isMax_toLocalSubring, toLocalSubring_injective, bijective_rangeRestrict_comp_of_valuationRing, iInf_valuationSubring_superset, instIsIntegrallyClosedSubtypeMemSubring, instIsIntegrallyClosedSubtypeMemValuationSubring
17
Total19

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
image_subset_nonunits_valuationSubring πŸ“–mathematicalβ€”Subring
DivisionRing.toRing
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
Subring.instPartialOrder
ValuationSubring.toSubring
Set
Set.instHasSubset
Set.image
SetLike.instMembership
Subring.instSetLike
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
Subring.toRing
RingHom.instFunLike
Subring.subtype
SetLike.coe
Ideal
CommSemiring.toSemiring
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
Subring.instSubringClass
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
NonUnitalSubring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
NonUnitalSubring.instSetLike
ValuationSubring.nonunits
β€”SubringClass.toSubsemiringClass
Subring.instSubringClass
exists_le_maximal
IsMaximal.isPrime'
LocalSubring.exists_le_valuationSubring
LE.le.trans
LocalSubring.le_ofPrime
ValuationSubring.instSubringClass
ValuationSubring.isLocalRing
ValuationSubring.image_maximalIdeal
HasSubset.Subset.trans
Set.instIsTransSubset
LocalSubring.isLocalRing
IsLocalization.AtPrime.map_eq_maximalIdeal
LocalSubring.instAtPrimeSubtypeMemSubringToSubringOfPrime
map_map
mem_map_of_mem
Set.image_mono
map_mono
List.TFAE.out
RingHom.instRingHomClass
IsLocalRing.local_hom_TFAE

IsLocalRing

Theorems

NameKindAssumesProvesValidatesDepends On
exists_factor_valuationRing πŸ“–mathematicalβ€”IsLocalHom
Subring
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subring.instSetLike
ValuationSubring.toSubring
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
SubsemiringClass.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
Subring.instSubringClass
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
RingHom.instFunLike
RingHom.codRestrict
β€”EuclideanDomain.toNontrivial
SubringClass.toSubsemiringClass
Subring.instSubringClass
LocalSubring.exists_le_valuationSubring
RingHom.isLocalHom_comp
IsLocalHom.of_surjective
Subring.instNontrivialSubtypeMem
RingHom.rangeRestrict_surjective

LocalSubring

Theorems

NameKindAssumesProvesValidatesDepends On
eq_iInf_of_isIntegrallyClosedIn πŸ“–mathematicalβ€”toSubring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
iInf
Subring
DivisionRing.toRing
Field.toDivisionRing
ValuationSubring
LocalSubring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ValuationSubring.toLocalSubring
Subring.instInfSet
ValuationSubring.toSubring
β€”le_antisymm
le_iInf
of_not_not
exists_le_valuationSubring_of_isIntegrallyClosedIn
iInf_le_of_le
le_rfl
exists_le_valuationSubring πŸ“–mathematicalβ€”LocalSubring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ValuationSubring.toLocalSubring
β€”zorn_le_nonempty_Iciβ‚€
Directed.mono_comp
toSubring_mono
IsChain.directed
instReflLe
SubringClass.toSubsemiringClass
Subring.instSubringClass
Subring.instNontrivialSubtypeMem
EuclideanDomain.toNontrivial
Subring.mem_iSup_of_directed
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
le_iSup
IsLocalRing.isUnit_or_isUnit_of_add_one
isLocalRing
isUnit_iff_exists_inv
SubmonoidClass.instIsDedekindFiniteMonoidSubtypeMem
SubsemiringClass.toSubmonoidClass
instIsDedekindFiniteMonoid
IsLocalHom.map_nonunit
le_rfl
exists_valuationRing_of_isMax
exists_le_valuationSubring_of_isIntegrallyClosedIn πŸ“–mathematicalSubring
CommRing.toRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
SetLike.instMembership
Subring.instSetLike
toSubring
LocalSubring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ValuationSubring.toLocalSubring
ValuationSubring
ValuationSubring.instSetLike
β€”eq_or_ne
Subring.zero_mem
SubringClass.toSubsemiringClass
Subring.instSubringClass
Algebra.subset_adjoin
isLocalRing
Algebra.exists_aeval_invOf_eq_zero_of_idealMap_adjoin_sup_span_eq_top
Ideal.IsMaximal.ne_top
IsLocalRing.maximalIdeal.isMaximal
of_not_not
sub_sub_cancel
sub_mem
Submodule.addSubgroupClass
Subring.isIntegrallyClosedIn_iff
Polynomial.Monic.leadingCoeff
Polynomial.leadingCoeff_mul
Subring.instNoZeroDivisorsSubtypeMem
IsDomain.to_noZeroDivisors
instIsDomain
Polynomial.leadingCoeff_C
IsUnit.val_inv_mul
Polynomial.evalβ‚‚_mul
Polynomial.evalβ‚‚_C
map_units_inv
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Subring.instFaithfulSMulSubtypeMem
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.self
EuclideanDomain.toNontrivial
Ideal.image_subset_nonunits_valuationSubring
Subalgebra.algebraMap_mem
List.TFAE.out
IsLocalRing.local_hom_TFAE
ValuationSubring.instSubringClass
ValuationSubring.isLocalRing
ValuationSubring.image_maximalIdeal
le_self_add
Submodule.instCanonicallyOrderedAdd
Ideal.mem_map_of_mem
ValuationSubring.inv_mem_nonunits_iff
le_add_self
Ideal.subset_span
exists_valuationRing_of_isMax πŸ“–mathematicalIsMax
LocalSubring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ValuationSubring.toLocalSubringβ€”mem_of_isMax_of_isIntegral
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
Subring.instSubringClass
SetLike.lt_iff_le_and_exists
instIsConcreteLE
algebraMap_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Subalgebra.instSubsemiringClass
Subalgebra.instSMulMemClass
Algebra.self_mem_adjoin_singleton
isLocalRing
Algebra.exists_aeval_invOf_eq_zero_of_idealMap_adjoin_sup_span_eq_top
Ideal.IsMaximal.ne_top
IsLocalRing.maximalIdeal.isMaximal
top_unique
Algebra.subset_adjoin
LE.le.trans
LT.lt.le
Eq.ge
map_maximalIdeal_eq_top_of_isMax
le_self_add
Submodule.instCanonicallyOrderedAdd
of_not_not
sub_sub_cancel
sub_mem
Submodule.addSubgroupClass
Polynomial.Monic.leadingCoeff
Polynomial.leadingCoeff_mul
Subring.instNoZeroDivisorsSubtypeMem
IsDomain.to_noZeroDivisors
instIsDomain
Polynomial.leadingCoeff_C
IsUnit.val_inv_mul
Polynomial.evalβ‚‚_mul
Polynomial.evalβ‚‚_C
map_units_inv
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Subring.instFaithfulSMulSubtypeMem
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.self
EuclideanDomain.toNontrivial
isMax_iff πŸ“–mathematicalβ€”IsMax
LocalSubring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ValuationSubring.toLocalSubring
β€”exists_valuationRing_of_isMax
ValuationSubring.isMax_toLocalSubring
map_maximalIdeal_eq_top_of_isMax πŸ“–mathematicalIsMax
LocalSubring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Subring
CommRing.toRing
Preorder.toLT
Subring.instPartialOrder
toSubring
Ideal.map
SetLike.instMembership
Subring.instSetLike
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
Subring.toRing
CommSemiring.toSemiring
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
Field.toDivisionRing
Subring.instSubringClass
RingHom.instFunLike
Subring.inclusion
LT.lt.le
IsLocalRing.maximalIdeal
isLocalRing
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”SubringClass.toSubsemiringClass
Subring.instSubringClass
LT.lt.le
isLocalRing
Ideal.exists_le_maximal
Ideal.IsMaximal.isPrime'
LE.le.trans
le_ofPrime
List.TFAE.out
RingHom.instRingHomClass
IsLocalRing.local_hom_TFAE
IsLocalization.AtPrime.map_eq_maximalIdeal
instAtPrimeSubtypeMemSubringToSubringOfPrime
Ideal.map_map
le_refl
Ideal.map_mono
LT.lt.not_ge
IsMax.eq_of_le
mem_of_isMax_of_isIntegral πŸ“–β€”IsMax
LocalSubring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
IsIntegral
Subring
CommRing.toRing
SetLike.instMembership
Subring.instSetLike
toSubring
Subring.toCommRing
DivisionRing.toRing
Field.toDivisionRing
Algebra.ofSubring
Algebra.id
CommRing.toCommSemiring
β€”β€”SubringClass.toSubsemiringClass
Subring.instSubringClass
Algebra.IsIntegral.adjoin
RingHom.instRingHomClass
isLocalRing
Ideal.exists_ideal_over_maximal_of_isIntegral
IsLocalRing.maximalIdeal.isMaximal
IsLocalRing.le_maximalIdeal
FaithfulSMul.ker_algebraMap_eq_bot
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
Subring.instIsDomainSubtypeMem
instIsDomain
SubsemiringClass.nontrivial
Subalgebra.instSubsemiringClass
EuclideanDomain.toNontrivial
Subalgebra.instIsTorsionFree
FaithfulSMul.to_isTorsionFree
Subring.instFaithfulSMulSubtypeMem
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.self
Subring.instNontrivialSubtypeMem
Ideal.instNontrivial
Ideal.IsMaximal.isPrime'
algebraMap_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Subalgebra.instSMulMemClass
IsMax.eq_of_le
LE.le.trans
le_ofPrime
List.TFAE.out
IsLocalRing.local_hom_TFAE
IsLocalization.AtPrime.map_eq_maximalIdeal
instAtPrimeSubtypeMemSubringToSubringOfPrime
Ideal.map_map
le_refl
Ideal.map_mono
Ideal.map_le_iff_le_comap
Eq.ge
Algebra.self_mem_adjoin_singleton

Subring

Theorems

NameKindAssumesProvesValidatesDepends On
eq_iInf_of_isIntegrallyClosedIn πŸ“–mathematicalβ€”iInf
Subring
DivisionRing.toRing
Field.toDivisionRing
ValuationSubring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ValuationSubring.toSubring
instInfSet
β€”le_antisymm
le_iInf
of_not_not
exists_le_valuationSubring_of_isIntegrallyClosedIn
iInf_le_of_le
le_rfl
exists_le_valuationSubring_of_isIntegrallyClosedIn πŸ“–mathematicalSubring
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
instSetLike
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ValuationSubring.toSubring
ValuationSubring
ValuationSubring.instSetLike
β€”eq_or_ne
zero_mem
SubringClass.toSubsemiringClass
instSubringClass
Algebra.subset_adjoin
Algebra.exists_aeval_invOf_eq_zero_of_idealMap_adjoin_sup_span_eq_top
bot_ne_top
Ideal.instNontrivial
instNontrivialSubtypeMem
EuclideanDomain.toNontrivial
top_unique
LE.le.trans
Eq.ge
le_add_self
Submodule.instCanonicallyOrderedAdd
isIntegrallyClosedIn_iff
Ideal.image_subset_nonunits_valuationSubring
Subalgebra.algebraMap_mem
ValuationSubring.inv_mem_nonunits_iff
Ideal.subset_span

ValuationSubring

Definitions

NameCategoryTheorems
toLocalSubring πŸ“–CompOp
7 mathmath: LocalSubring.isMax_iff, isMax_toLocalSubring, LocalSubring.exists_le_valuationSubring, LocalSubring.exists_le_valuationSubring_of_isIntegrallyClosedIn, toLocalSubring_injective, LocalSubring.eq_iInf_of_isIntegrallyClosedIn, LocalSubring.exists_valuationRing_of_isMax

Theorems

NameKindAssumesProvesValidatesDepends On
isMax_toLocalSubring πŸ“–mathematicalβ€”IsMax
LocalSubring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
LocalSubring.instPartialOrder
toLocalSubring
β€”Eq.ge
LocalSubring.toSubring_injective
LE.le.antisymm
mem_or_inv_mem'
zero_mem
SubringClass.toSubsemiringClass
Subring.instSubringClass
isUnit_iff_exists_inv
SubmonoidClass.instIsDedekindFiniteMonoidSubtypeMem
SubsemiringClass.toSubmonoidClass
instIsDedekindFiniteMonoid
inv_mul_cancelβ‚€
IsLocalHom.map_nonunit
inv_mul_eq_iff_eq_mulβ‚€
mul_one
toLocalSubring_injective πŸ“–mathematicalβ€”ValuationSubring
LocalSubring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toLocalSubring
β€”toSubring_injective

(root)

Definitions

NameCategoryTheorems
LocalSubring πŸ“–CompData
9 mathmath: LocalSubring.isMax_iff, ValuationSubring.isMax_toLocalSubring, LocalSubring.toSubring_mono, LocalSubring.exists_le_valuationSubring, LocalSubring.exists_le_valuationSubring_of_isIntegrallyClosedIn, ValuationSubring.toLocalSubring_injective, LocalSubring.eq_iInf_of_isIntegrallyClosedIn, LocalSubring.le_def, LocalSubring.toSubring_injective

Theorems

NameKindAssumesProvesValidatesDepends On
bijective_rangeRestrict_comp_of_valuationRing πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
algebraMap
Function.Bijective
Subring
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subring.instSetLike
RingHom.range
CommRing.toRing
DFunLike.coe
RingHom
Ring.toSemiring
Subring.toRing
RingHom.instFunLike
RingHom.rangeRestrict
β€”Function.Injective.of_comp
IsFractionRing.injective
ValuationRing.isInteger_or_isInteger
EuclideanDomain.toNontrivial
ValuationSubring.isMax_toLocalSubring
IsUnit.of_map
IsLocalHom.map_nonunit
IsLocalHom.of_surjective
Subring.instNontrivialSubtypeMem
RingHom.rangeRestrict_surjective
SubringClass.toSubsemiringClass
Subring.instSubringClass
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
iInf_valuationSubring_superset πŸ“–mathematicalβ€”iInf
Subring
DivisionRing.toRing
Field.toDivisionRing
ValuationSubring
Set
Set.instHasSubset
SetLike.coe
Subring.instSetLike
ValuationSubring.toSubring
Subring.instInfSet
Subalgebra.toSubring
SetLike.instMembership
Subring.closure
Subring.toCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.ofSubring
Algebra.id
CommRing.toCommSemiring
integralClosure
β€”iInf_subtype
iInf_congr_Prop
IsIntegralClosure.of_isIntegrallyClosed
ValuationSubring.instIsFractionRingSubtypeMem
instIsIntegrallyClosedSubtypeMemValuationSubring
IsScalarTower.left
SubringClass.toSubsemiringClass
ValuationSubring.instSubringClass
Algebra.IsIntegral.of_finite
Module.Finite.self
Subring.integralClosure_subring_le_iff
Subring.closure_le
Subring.eq_iInf_of_isIntegrallyClosedIn
instIsIntegrallyClosedInSubtypeMemSubringToSubringIntegralClosure
instIsIntegrallyClosedSubtypeMemSubring πŸ“–mathematicalβ€”IsIntegrallyClosed
Subring
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subring.instSetLike
ValuationSubring.toSubring
Subring.toCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”ValuationSubring.integer_valuation
Valuation.Integers.isIntegrallyClosed_integers
instIsIntegrallyClosedSubtypeMemValuationSubring πŸ“–mathematicalβ€”IsIntegrallyClosed
ValuationSubring
SetLike.instMembership
ValuationSubring.instSetLike
ValuationSubring.instCommRingSubtypeMem
β€”instIsIntegrallyClosedSubtypeMemSubring

---

← Back to Index