| Name | Category | Theorems |
ValueGroup π | CompOp | 21 mathmath: valuation_lt_one_iff, valuation_le_iff, Valuation.isEquiv_valuation_valuationSubring, ofPrime_valuation_eq_one_iff_mem_primeCompl, valuation_unit, mapOfLE_valuation_apply, eq_top_iff, valuation_lt_one_or_eq_one, valuation_le_one, valuation_le_one_iff, mem_unitGroup_iff, monotone_mapOfLE, valuation_eq_iff, Valuation.isNontrivial_valuation_valuationSubring_iff, mem_principalUnitGroup_iff, mem_nonunits_iff, valuation_eq_one_iff, valuation_surjective, integer_valuation, mapOfLE_comp_valuation, valuationSubring_valuation
|
comap π | CompOp | 3 mathmath: mem_comap, coe_comap, comap_comap
|
idealOfLE π | CompOp | 4 mathmath: idealOfLE_le_of_le, prime_idealOfLE, idealOfLE_ofPrime, ofPrime_idealOfLE
|
inclusion π | CompOp | 1 mathmath: coe_primeSpectrumOrderEquiv_symm_apply_asIdeal
|
inhabitedValueGroup π | CompOp | β |
instAlgebraSubtypeMem π | CompOp | 9 mathmath: IsDedekindDomain.HeightOneSpectrum.adicCompletion.instIsScalarTower', IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.integers, instIsFractionRingSubtypeMem, Valuation.HasExtension.instIsScalarTower_valuationSubring', algebraMap_apply, Valuation.valuationSubring.integers, ofPrime_scalar_tower, Valuation.HasExtension.instIsScalarTower_valuationSubring, PadicComplexInt.integers
|
instCommRingSubtypeMem π | CompOp | 25 mathmath: coe_mem_principalUnitGroup_iff, integralClosure_algebraMap_injective, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_symm_apply, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.integers, PadicInt.coe_adicCompletionIntegersEquiv_symm_apply, instIsIntegrallyClosedSubtypeMemValuationSubring, IsDedekindDomain.HeightOneSpectrum.instIsTorsionFreeSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, Valuation.valuationSubring_isDiscreteValuationRing, PadicInt.coe_adicCompletionIntegersEquiv_apply, instValuationRingSubtypeMem, isIntegral_of_mem_ringOfIntegers', Valuation.valuationSubring.integers, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_apply, LaurentSeries.powerSeriesRingEquiv_coe_apply, instIsDiscreteValuationRingSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, ofPrime_scalar_tower, surjective_unitGroupToResidueFieldUnits, principalUnitGroupEquiv_apply, unitsModPrincipalUnitsEquivResidueFieldUnits_comp_quotientGroup_mk_apply, ker_unitGroupToResidueFieldUnits, unitsModPrincipalUnitsEquivResidueFieldUnits_comp_quotientGroup_mk, coe_unitGroupToResidueFieldUnits_apply, Valuation.HasExtension.algebraMap_residue_eq_residue_algebraMap, PadicComplexInt.integers, principalUnitGroup_symm_apply
|
instFieldSubtypeMemTop π | CompOp | 2 mathmath: top_coe_div, top_coe_inv
|
instInhabited π | CompOp | β |
instLinearOrderedCommGroupWithZeroValueGroup π | CompOp | 21 mathmath: valuation_lt_one_iff, valuation_le_iff, Valuation.isEquiv_valuation_valuationSubring, ofPrime_valuation_eq_one_iff_mem_primeCompl, valuation_unit, mapOfLE_valuation_apply, eq_top_iff, valuation_lt_one_or_eq_one, valuation_le_one, valuation_le_one_iff, mem_unitGroup_iff, monotone_mapOfLE, valuation_eq_iff, Valuation.isNontrivial_valuation_valuationSubring_iff, mem_principalUnitGroup_iff, mem_nonunits_iff, valuation_eq_one_iff, valuation_surjective, integer_valuation, mapOfLE_comp_valuation, valuationSubring_valuation
|
instOrderTop π | CompOp | β |
instPartialOrder π | CompOp | 15 mathmath: pointwise_smul_le_pointwise_smul_iff, principalUnitGroup_le_principalUnitGroup, primeSpectrumOrderEquiv_apply_coe_carrier, nonunits_le_nonunits, unitGroup_strictMono, pointwise_smul_subset_iff, unitGroup_le_unitGroup, le_top, instCovariantClassHSMulLe, coe_primeSpectrumOrderEquiv_symm_apply_asIdeal, le_ofPrime, ofPrime_le_of_le, subset_pointwise_smul_iff, le_total_ideal, primeSpectrumEquiv_apply
|
instSemilatticeSup π | CompOp | β |
instSetLike π | CompOp | 124 mathmath: mem_comap, coe_mem_principalUnitGroup_iff, valuation_lt_one_iff, image_maximalIdeal, integralClosure_algebraMap_injective, Valuation.mem_maximalIdeal_iff, mem_toSubring, mem_top, mem_or_inv_mem, valuation_le_iff, IsDedekindDomain.HeightOneSpectrum.instFaithfulSMulSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, Valuation.HasExtension.instIsLocalHomSubtypeMemValuationSubringValuationSubringRingHomAlgebraMap, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_symm_apply, IsDedekindDomain.HeightOneSpectrum.mem_adicCompletionIntegers, ofPrime_valuation_eq_one_iff_mem_primeCompl, valuation_unit, ArchimedeanClass.FiniteResidueField.mk_eq_zero, nonunits_subset, mem_inv_pointwise_smul_iff, mem_of_valuation_le_one, Subring.exists_le_valuationSubring_of_isIntegrallyClosedIn, subtype_injective, IsDedekindDomain.HeightOneSpectrum.adicCompletion.instIsScalarTower', LaurentSeries.algebraMap_C_mem_adicCompletionIntegers, ArchimedeanClass.FiniteElement.val_add, valuation_lt_one_or_eq_one, mem_pointwise_smul_iff_inv_smul_mem, isLocalRing, smul_mem_pointwise_smul_iff, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.integers, Rat.HeightOneSpectrum.adicCompletion.padicEquiv_bijOn, ArchimedeanClass.FiniteElement.not_isUnit_iff_mk_pos, LocalSubring.exists_le_valuationSubring_of_isIntegrallyClosedIn, idealOfLE_le_of_le, IsDedekindDomain.HeightOneSpectrum.algebraMap_adicCompletionIntegers_apply, Valued.isClopen_valuationSubring, IsDedekindDomain.HeightOneSpectrum.coe_smul_adicCompletionIntegers, IsDedekindDomain.HeightOneSpectrum.coe_algebraMap_mem, Valuation.exists_isUniformizer_of_isCyclic_of_nontrivial, Valued.isClosed_valuationSubring, valuation_le_one, ArchimedeanClass.FiniteElement.val_mul, Valuation.HasExtension.maximalIdeal_comap_algebraMap_eq_maximalIdeal, PadicInt.coe_adicCompletionIntegersEquiv_symm_apply, primeSpectrumOrderEquiv_apply_coe_carrier, instIsIntegrallyClosedSubtypeMemValuationSubring, Valuation.mem_valuationSubring_iff, coe_unitGroupMulEquiv_apply, Valuation.pow_Uniformizer_is_pow_generator, valuation_le_one_iff, Valuation.ideal_isPrincipal, instIsScalarTowerSubtypeMemValuationSubringWithZeroMultiplicativeInt, ArchimedeanClass.FiniteElement.val_sub, mem_carrier, IsDedekindDomain.HeightOneSpectrum.instIsTorsionFreeSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, Valuation.valuationSubring_isDiscreteValuationRing, Valued.isOpen_valuationSubring, PadicInt.coe_adicCompletionIntegersEquiv_apply, instIsDomainSubtypeMem, zero_mem, instIsFractionRingSubtypeMem, Valuation.HasExtension.instIsScalarTower_valuationSubring', algebraMap_apply, valuation_eq_iff, ArchimedeanClass.FiniteResidueField.mk_eq_mk, instValuationRingSubtypeMem, Valuation.valuationSubring_isPrincipalIdealRing, isIntegral_of_mem_ringOfIntegers', ext_iff, ArchimedeanClass.FiniteElement.val_zero, coe_mem_nonunits_iff, ArchimedeanClass.FiniteElement.isUnit_iff_mk_eq_zero, mem_nonunits_iff_exists_mem_maximalIdeal, LaurentSeries.LaurentSeriesRingEquiv_mem_valuationSubring, IsDedekindDomain.HeightOneSpectrum.coe_mem_adicCompletionIntegers, top_coe_div, Valuation.HasExtension.algebraMap_mem_valuationSubring, ArchimedeanClass.FiniteResidueField.mk_ne_zero, Valuation.valuationSubring.integers, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_apply, LaurentSeries.powerSeriesRingEquiv_coe_apply, prime_idealOfLE, instIsDiscreteValuationRingSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, ArchimedeanClass.FiniteElement.val_one, ofPrime_scalar_tower, inv_mem_nonunits_iff, surjective_unitGroupToResidueFieldUnits, principalUnitGroupEquiv_apply, instSubringClass, one_mem, mem_nonunits_iff_or, coe_comap, Valuation.valuationSubring_not_isField, coe_pointwise_smul, unitsModPrincipalUnitsEquivResidueFieldUnits_comp_quotientGroup_mk_apply, coe_unitGroupMulEquiv_symm_apply, Valuation.exists_pow_Uniformizer, mem_smul_pointwise_iff_exists, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.isUnit_iff_valued_eq_one, mem_ofSubring, instIsPrincipalIdealRingSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, Valuation.Uniformizer.is_generator, coe_primeSpectrumOrderEquiv_symm_apply_asIdeal, subtype_apply, valuation_eq_one_iff, ofPrime_localization, ker_unitGroupToResidueFieldUnits, Valuation.HasExtension.instIsScalarTower_valuationSubring, LaurentSeries.mem_integers_of_powerSeries, top_coe_inv, Valuation.HasExtension.coe_algebraMap_valuationSubring_eq, algebraMap_injective, IsDedekindDomain.HeightOneSpectrum.adicCompletion.mul_nonZeroDivisor_mem_adicCompletionIntegers, Valuation.HasExtension.instLiesOverSubtypeMemValuationSubringValuationSubringMaximalIdeal, primeSpectrumEquiv_apply, unitsModPrincipalUnitsEquivResidueFieldUnits_comp_quotientGroup_mk, coe_unitGroupToResidueFieldUnits_apply, coe_subtype, Valuation.HasExtension.algebraMap_residue_eq_residue_algebraMap, PadicComplexInt.integers, ArchimedeanClass.FiniteElement.ext_iff, principalUnitGroup_symm_apply, IsDedekindDomain.HeightOneSpectrum.notMem_adicCompletionIntegers, Valuation.HasExtension.algebraMap_mem_maximalIdeal_iff
|
instTop π | CompOp | 7 mathmath: mem_top, toSubring_top, eq_top_iff, top_coe_div, le_top, Valuation.valuationSubring_eq_top_iff, top_coe_inv
|
linearOrderOverring π | CompOp | β |
mapOfLE π | CompOp | 3 mathmath: mapOfLE_valuation_apply, monotone_mapOfLE, mapOfLE_comp_valuation
|
nonunits π | CompOp | 12 mathmath: image_maximalIdeal, nonunits_subset, nonunits_injective, Ideal.image_subset_nonunits_valuationSubring, nonunits_le_nonunits, coe_mem_nonunits_iff, mem_nonunits_iff_exists_mem_maximalIdeal, inv_mem_nonunits_iff, mem_nonunits_iff_or, nonunits_le, mem_nonunits_iff, nonunits_inj
|
nonunitsOrderEmbedding π | CompOp | β |
ofLE π | CompOp | β |
ofPrime π | CompOp | 8 mathmath: ofPrime_valuation_eq_one_iff_mem_primeCompl, ofPrime_scalar_tower, idealOfLE_ofPrime, ofPrime_localization, le_ofPrime, ofPrime_idealOfLE, ofPrime_le_of_le, primeSpectrumEquiv_apply
|
ofPrimeAlgebra π | CompOp | 2 mathmath: ofPrime_scalar_tower, ofPrime_localization
|
ofSubring π | CompOp | 1 mathmath: mem_ofSubring
|
pointwiseHasSMul π | CompOp | 12 mathmath: mem_inv_pointwise_smul_iff, pointwise_smul_le_pointwise_smul_iff, mem_pointwise_smul_iff_inv_smul_mem, smul_mem_pointwise_smul_iff, pointwise_smul_toSubring, pointwise_central_scalar, pointwise_smul_subset_iff, coe_pointwise_smul, mem_smul_pointwise_iff_exists, instCovariantClassHSMulLe, smul_mem_pointwise_smul, subset_pointwise_smul_iff
|
pointwiseMulAction π | CompOp | β |
primeSpectrumEquiv π | CompOp | 1 mathmath: primeSpectrumEquiv_apply
|
primeSpectrumOrderEquiv π | CompOp | 2 mathmath: primeSpectrumOrderEquiv_apply_coe_carrier, coe_primeSpectrumOrderEquiv_symm_apply_asIdeal
|
principalUnitGroup π | CompOp | 11 mathmath: coe_mem_principalUnitGroup_iff, eq_iff_principalUnitGroup, principalUnitGroup_le_principalUnitGroup, principal_units_le_units, principalUnitGroupEquiv_apply, mem_principalUnitGroup_iff, unitsModPrincipalUnitsEquivResidueFieldUnits_comp_quotientGroup_mk_apply, ker_unitGroupToResidueFieldUnits, unitsModPrincipalUnitsEquivResidueFieldUnits_comp_quotientGroup_mk, principalUnitGroup_injective, principalUnitGroup_symm_apply
|
principalUnitGroupEquiv π | CompOp | 2 mathmath: principalUnitGroupEquiv_apply, principalUnitGroup_symm_apply
|
principalUnitGroupOrderEmbedding π | CompOp | β |
subtype π | CompOp | 3 mathmath: subtype_injective, subtype_apply, coe_subtype
|
toSubring π | CompOp | 19 mathmath: mem_toSubring, toSubring_top, Subring.exists_le_valuationSubring_of_isIntegrallyClosedIn, iInf_valuationSubring_superset, Ideal.image_subset_nonunits_valuationSubring, LocalSubring.eq_iInf_of_isIntegrallyClosedIn, pointwise_smul_toSubring, mem_carrier, IsLocalRing.exists_factor_valuationRing, IsDiscreteValuationRing.map_algebraMap_eq_valuationSubring, LaurentSeries.powerSeries_ext_subring, mem_or_inv_mem', toSubring_injective, nonunits_le, Subring.eq_iInf_of_isIntegrallyClosedIn, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.mem_units_iff_valued_eq_one, Set.integer_eq, integer_valuation, instIsIntegrallyClosedSubtypeMemSubring
|
unitGroup π | CompOp | 16 mathmath: coe_mem_principalUnitGroup_iff, Set.unit_eq, Valuation.mem_unitGroup_iff, coe_unitGroupMulEquiv_apply, unitGroup_injective, mem_unitGroup_iff, unitGroup_strictMono, unitGroup_le_unitGroup, principal_units_le_units, surjective_unitGroupToResidueFieldUnits, unitsModPrincipalUnitsEquivResidueFieldUnits_comp_quotientGroup_mk_apply, coe_unitGroupMulEquiv_symm_apply, eq_iff_unitGroup, ker_unitGroupToResidueFieldUnits, unitsModPrincipalUnitsEquivResidueFieldUnits_comp_quotientGroup_mk, coe_unitGroupToResidueFieldUnits_apply
|
unitGroupMulEquiv π | CompOp | 4 mathmath: coe_mem_principalUnitGroup_iff, coe_unitGroupMulEquiv_apply, coe_unitGroupMulEquiv_symm_apply, coe_unitGroupToResidueFieldUnits_apply
|
unitGroupOrderEmbedding π | CompOp | β |
unitGroupToResidueFieldUnits π | CompOp | 5 mathmath: surjective_unitGroupToResidueFieldUnits, unitsModPrincipalUnitsEquivResidueFieldUnits_comp_quotientGroup_mk_apply, ker_unitGroupToResidueFieldUnits, unitsModPrincipalUnitsEquivResidueFieldUnits_comp_quotientGroup_mk, coe_unitGroupToResidueFieldUnits_apply
|
unitsModPrincipalUnitsEquivResidueFieldUnits π | CompOp | 2 mathmath: unitsModPrincipalUnitsEquivResidueFieldUnits_comp_quotientGroup_mk_apply, unitsModPrincipalUnitsEquivResidueFieldUnits_comp_quotientGroup_mk
|
valuation π | CompOp | 20 mathmath: valuation_lt_one_iff, valuation_le_iff, Valuation.isEquiv_valuation_valuationSubring, ofPrime_valuation_eq_one_iff_mem_primeCompl, valuation_unit, mapOfLE_valuation_apply, eq_top_iff, valuation_lt_one_or_eq_one, valuation_le_one, valuation_le_one_iff, mem_unitGroup_iff, valuation_eq_iff, Valuation.isNontrivial_valuation_valuationSubring_iff, mem_principalUnitGroup_iff, mem_nonunits_iff, valuation_eq_one_iff, valuation_surjective, integer_valuation, mapOfLE_comp_valuation, valuationSubring_valuation
|