Documentation

Mathlib.RingTheory.Valuation.ValuationSubring

Valuation subrings of a field #

Projects #

The order structure on ValuationSubring K.

structure ValuationSubring (K : Type u) [Field K] extends Subring K :

A valuation subring of a field K is a subring A such that for every x : K, either x โˆˆ A or xโปยน โˆˆ A.

This is equivalent to being maximal in the domination order of local subrings (the stacks project definition). See LocalSubring.isMax_iff.

Instances For
    theorem ValuationSubring.ext {K : Type u} [Field K] (A B : ValuationSubring K) (h : โˆ€ (x : K), x โˆˆ A โ†” x โˆˆ B) :
    A = B
    theorem ValuationSubring.ext_iff {K : Type u} [Field K] {A B : ValuationSubring K} :
    A = B โ†” โˆ€ (x : K), x โˆˆ A โ†” x โˆˆ B
    theorem ValuationSubring.add_mem {K : Type u} [Field K] (A : ValuationSubring K) (x y : K) :
    x โˆˆ A โ†’ y โˆˆ A โ†’ x + y โˆˆ A
    theorem ValuationSubring.mul_mem {K : Type u} [Field K] (A : ValuationSubring K) (x y : K) :
    x โˆˆ A โ†’ y โˆˆ A โ†’ x * y โˆˆ A
    theorem ValuationSubring.neg_mem {K : Type u} [Field K] (A : ValuationSubring K) (x : K) :
    x โˆˆ A โ†’ -x โˆˆ A

    If K is a field, then so is K viewed as a valuation subring of itself. (That is, โŠค : ValuationSubring K.)

    Equations
      @[simp]
      theorem ValuationSubring.top_coe_div {K : Type u} [Field K] (x y : โ†ฅโŠค) :
      โ†‘(x / y) = โ†‘x / โ†‘y
      @[simp]
      theorem ValuationSubring.top_coe_inv {K : Type u} [Field K] (x : โ†ฅโŠค) :
      โ†‘xโปยน = (โ†‘x)โปยน
      @[simp]
      theorem ValuationSubring.algebraMap_apply {K : Type u} [Field K] (A : ValuationSubring K) (a : โ†ฅA) :
      (algebraMap (โ†ฅA) K) a = โ†‘a

      The value group of the valuation associated to A. Note: it is actually a group with zero.

      Equations
        Instances For

          Any valuation subring of K induces a natural valuation on K.

          Equations
            Instances For
              theorem ValuationSubring.valuation_eq_iff {K : Type u} [Field K] (A : ValuationSubring K) (x y : K) :
              A.valuation x = A.valuation y โ†” โˆƒ (a : (โ†ฅA)หฃ), โ†‘โ†‘a * y = x
              theorem ValuationSubring.valuation_le_iff {K : Type u} [Field K] (A : ValuationSubring K) (x y : K) :
              A.valuation x โ‰ค A.valuation y โ†” โˆƒ (a : โ†ฅA), โ†‘a * y = x
              @[simp]
              theorem ValuationSubring.valuation_unit {K : Type u} [Field K] (A : ValuationSubring K) (a : (โ†ฅA)หฃ) :
              A.valuation โ†‘โ†‘a = 1
              theorem ValuationSubring.valuation_lt_one_or_eq_one {K : Type u} [Field K] (A : ValuationSubring K) (a : โ†ฅA) :
              A.valuation โ†‘a < 1 โˆจ A.valuation โ†‘a = 1
              def ValuationSubring.ofSubring {K : Type u} [Field K] (R : Subring K) (hR : โˆ€ (x : K), x โˆˆ R โˆจ xโปยน โˆˆ R) :

              A subring R of K such that for all x : K either x โˆˆ R or xโปยน โˆˆ R is a valuation subring of K.

              Equations
                Instances For
                  @[simp]
                  theorem ValuationSubring.mem_ofSubring {K : Type u} [Field K] (R : Subring K) (hR : โˆ€ (x : K), x โˆˆ R โˆจ xโปยน โˆˆ R) (x : K) :

                  An overring of a valuation ring is a valuation ring.

                  Equations
                    Instances For
                      def ValuationSubring.inclusion {K : Type u} [Field K] (R S : ValuationSubring K) (h : R โ‰ค S) :
                      โ†ฅR โ†’+* โ†ฅS

                      The ring homomorphism induced by the partial order.

                      Equations
                        Instances For
                          def ValuationSubring.subtype {K : Type u} [Field K] (R : ValuationSubring K) :
                          โ†ฅR โ†’+* K

                          The canonical ring homomorphism from a valuation ring to its field of fractions.

                          Equations
                            Instances For
                              @[simp]
                              theorem ValuationSubring.subtype_apply {K : Type u} [Field K] {R : ValuationSubring K} (x : โ†ฅR) :
                              R.subtype x = โ†‘x

                              The canonical map on value groups induced by a coarsening of valuation rings.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem ValuationSubring.mapOfLE_comp_valuation {K : Type u} [Field K] (R S : ValuationSubring K) (h : R โ‰ค S) :
                                  โ‡‘(R.mapOfLE S h) โˆ˜ โ‡‘R.valuation = โ‡‘S.valuation
                                  @[simp]
                                  theorem ValuationSubring.mapOfLE_valuation_apply {K : Type u} [Field K] (R S : ValuationSubring K) (h : R โ‰ค S) (x : K) :
                                  (R.mapOfLE S h) (R.valuation x) = S.valuation x
                                  def ValuationSubring.idealOfLE {K : Type u} [Field K] (R S : ValuationSubring K) (h : R โ‰ค S) :
                                  Ideal โ†ฅR

                                  The ideal corresponding to a coarsening of a valuation ring.

                                  Equations
                                    Instances For
                                      def ValuationSubring.ofPrime {K : Type u} [Field K] (A : ValuationSubring K) (P : Ideal โ†ฅA) [P.IsPrime] :

                                      The coarsening of a valuation ring associated to a prime ideal.

                                      Equations
                                        Instances For
                                          instance ValuationSubring.ofPrimeAlgebra {K : Type u} [Field K] (A : ValuationSubring K) (P : Ideal โ†ฅA) [P.IsPrime] :
                                          Algebra โ†ฅA โ†ฅ(A.ofPrime P)
                                          Equations
                                            instance ValuationSubring.ofPrime_scalar_tower {K : Type u} [Field K] (A : ValuationSubring K) (P : Ideal โ†ฅA) [P.IsPrime] :
                                            IsScalarTower (โ†ฅA) (โ†ฅ(A.ofPrime P)) K
                                            @[simp]
                                            theorem ValuationSubring.idealOfLE_ofPrime {K : Type u} [Field K] (A : ValuationSubring K) (P : Ideal โ†ฅA) [P.IsPrime] :
                                            A.idealOfLE (A.ofPrime P) โ‹ฏ = P
                                            theorem ValuationSubring.idealOfLE_le_of_le {K : Type u} [Field K] (A R S : ValuationSubring K) (hR : A โ‰ค R) (hS : A โ‰ค S) (h : R โ‰ค S) :

                                            The equivalence between coarsenings of a valuation ring and its prime ideals.

                                            Equations
                                              Instances For
                                                @[simp]
                                                theorem ValuationSubring.coe_primeSpectrumOrderEquiv_symm_apply_asIdeal {K : Type u} [Field K] (A : ValuationSubring K) (aโœ : { S : ValuationSubring K // A โ‰ค S }) :
                                                โ†‘((RelIso.symm A.primeSpectrumOrderEquiv) aโœ).asIdeal = โ‡‘(A.inclusion โ†‘aโœ โ‹ฏ) โปยน' โ†‘(IsLocalRing.maximalIdeal โ†ฅโ†‘aโœ)
                                                @[simp]
                                                theorem ValuationSubring.primeSpectrumOrderEquiv_apply_coe_carrier {K : Type u} [Field K] (A : ValuationSubring K) (aโœ : (PrimeSpectrum โ†ฅA)แต’แตˆ) :
                                                โ†‘โ†‘(A.primeSpectrumOrderEquiv aโœ) = {x : K | โˆƒ a โˆˆ A, โˆƒ (a_1 : K), (โˆƒ (x : a_1 โˆˆ A), โŸจa_1, โ‹ฏโŸฉ โˆ‰ (OrderDual.ofDual aโœ).asIdeal) โˆง x = a * a_1โปยน}

                                                The valuation subring associated to a valuation.

                                                Equations
                                                  Instances For
                                                    theorem Valuation.isEquiv_iff_valuationSubring {K : Type u} [Field K] {ฮ“โ‚ : Type u_2} {ฮ“โ‚‚ : Type u_3} [LinearOrderedCommGroupWithZero ฮ“โ‚] [LinearOrderedCommGroupWithZero ฮ“โ‚‚] (vโ‚ : Valuation K ฮ“โ‚) (vโ‚‚ : Valuation K ฮ“โ‚‚) :
                                                    vโ‚.IsEquiv vโ‚‚ โ†” vโ‚.valuationSubring = vโ‚‚.valuationSubring

                                                    The unit group of a valuation subring, as a subgroup of Kหฃ.

                                                    Equations
                                                      Instances For

                                                        For a valuation subring A, A.unitGroup agrees with the units of A.

                                                        Equations
                                                          Instances For
                                                            @[simp]
                                                            theorem ValuationSubring.coe_unitGroupMulEquiv_apply {K : Type u} [Field K] (A : ValuationSubring K) (a : โ†ฅA.unitGroup) :
                                                            โ†‘โ†‘(A.unitGroupMulEquiv a) = โ†‘โ†‘a
                                                            @[simp]
                                                            theorem ValuationSubring.coe_unitGroupMulEquiv_symm_apply {K : Type u} [Field K] (A : ValuationSubring K) (a : (โ†ฅA)หฃ) :
                                                            โ†‘โ†‘(A.unitGroupMulEquiv.symm a) = โ†‘โ†‘a

                                                            The map on valuation subrings to their unit groups is an order embedding.

                                                            Equations
                                                              Instances For

                                                                The nonunits of a valuation subring of K, as a nonunital subring of K

                                                                Equations
                                                                  Instances For

                                                                    The map on valuation subrings to their nonunits is a dual order embedding.

                                                                    Equations
                                                                      Instances For

                                                                        The elements of A.nonunits are those of the maximal ideal of A after coercion to K.

                                                                        See also mem_nonunits_iff_exists_mem_maximalIdeal, which gets rid of the coercion to K, at the expense of a more complicated right-hand side.

                                                                        The elements of A.nonunits are those of the maximal ideal of A.

                                                                        See also coe_mem_nonunits_iff, which has a simpler right-hand side but requires the element to be in A already.

                                                                        A.nonunits agrees with the maximal ideal of A, after taking its image in K.

                                                                        The principal unit group of a valuation subring, as a subgroup of Kหฃ.

                                                                        Equations
                                                                          Instances For

                                                                            The map on valuation subrings to their principal unit groups is an order embedding.

                                                                            Equations
                                                                              Instances For

                                                                                The principal unit group agrees with the kernel of the canonical map from the units of A to the units of the residue field of A.

                                                                                Equations
                                                                                  Instances For
                                                                                    theorem ValuationSubring.principalUnitGroupEquiv_apply {K : Type u} [Field K] (A : ValuationSubring K) (a : โ†ฅA.principalUnitGroup) :
                                                                                    โ†‘โ†‘โ†‘(A.principalUnitGroupEquiv a) = โ†‘โ†‘a
                                                                                    theorem ValuationSubring.principalUnitGroup_symm_apply {K : Type u} [Field K] (A : ValuationSubring K) (a : โ†ฅ(Units.map โ†‘(IsLocalRing.residue โ†ฅA)).ker) :
                                                                                    โ†‘โ†‘(A.principalUnitGroupEquiv.symm a) = โ†‘โ†‘โ†‘a

                                                                                    The canonical map from the unit group of A to the units of the residue field of A.

                                                                                    Equations
                                                                                      Instances For

                                                                                        The quotient of the unit group of A by the principal unit group of A agrees with the units of the residue field of A.

                                                                                        Equations
                                                                                          Instances For

                                                                                            Pointwise actions #

                                                                                            This transfers the action from Subring.pointwiseMulAction, noting that it only applies when the action is by a group. Notably this provides an instances when G is K โ‰ƒ+* K.

                                                                                            These instances are in the Pointwise locale.

                                                                                            The lemmas in this section are copied from the file Mathlib/Algebra/Ring/Subring/Pointwise.lean; try to keep these in sync.

                                                                                            The action on a valuation subring corresponding to applying the action to every element.

                                                                                            This is available as an instance in the Pointwise locale.

                                                                                            Equations
                                                                                              Instances For
                                                                                                @[simp]
                                                                                                theorem ValuationSubring.coe_pointwise_smul {K : Type u} [Field K] {G : Type u_1} [Group G] [MulSemiringAction G K] (g : G) (S : ValuationSubring K) :
                                                                                                โ†‘(g โ€ข S) = g โ€ข โ†‘S

                                                                                                The action on a valuation subring corresponding to applying the action to every element.

                                                                                                This is available as an instance in the Pointwise locale.

                                                                                                This is a stronger version of ValuationSubring.pointwiseSMul.

                                                                                                Equations
                                                                                                  Instances For
                                                                                                    theorem ValuationSubring.smul_mem_pointwise_smul {K : Type u} [Field K] {G : Type u_1} [Group G] [MulSemiringAction G K] (g : G) (x : K) (S : ValuationSubring K) :
                                                                                                    x โˆˆ S โ†’ g โ€ข x โˆˆ g โ€ข S
                                                                                                    theorem ValuationSubring.mem_smul_pointwise_iff_exists {K : Type u} [Field K] {G : Type u_1} [Group G] [MulSemiringAction G K] (g : G) (x : K) (S : ValuationSubring K) :
                                                                                                    x โˆˆ g โ€ข S โ†” โˆƒ s โˆˆ S, g โ€ข s = x
                                                                                                    def ValuationSubring.comap {K : Type u} [Field K] {L : Type u_1} [Field L] (A : ValuationSubring L) (f : K โ†’+* L) :

                                                                                                    The pullback of a valuation subring A along a ring homomorphism K โ†’+* L.

                                                                                                    Equations
                                                                                                      Instances For
                                                                                                        @[simp]
                                                                                                        theorem ValuationSubring.coe_comap {K : Type u} [Field K] {L : Type u_1} [Field L] (A : ValuationSubring L) (f : K โ†’+* L) :
                                                                                                        โ†‘(A.comap f) = โ‡‘f โปยน' โ†‘A
                                                                                                        @[simp]
                                                                                                        theorem ValuationSubring.mem_comap {K : Type u} [Field K] {L : Type u_1} [Field L] {A : ValuationSubring L} {f : K โ†’+* L} {x : K} :
                                                                                                        theorem ValuationSubring.comap_comap {K : Type u} [Field K] {L : Type u_1} {J : Type u_2} [Field L] [Field J] (A : ValuationSubring J) (g : L โ†’+* J) (f : K โ†’+* L) :
                                                                                                        (A.comap g).comap f = A.comap (g.comp f)