Documentation Verification Report

Topology

πŸ“ Source: Mathlib/SetTheory/Ordinal/Topology.lean

Statistics

MetricCount
DefinitionsIsAcc, IsClosedBelow, instTopologicalSpace
3
Theoremsforall_lt, inter_Ioo_nonempty, isSuccLimit, mono, pos, forall_lt, iInter, sInter, accPt_subtype, enumOrd_isNormal_iff_isClosed, instOrderTopology, isAcc_iff, isClosedBelow_iff, isClosed_iff_bsup, isClosed_iff_iSup, isNormal_iff_strictMono_and_continuous, isOpen_iff, isOpen_singleton_iff, isSuccLimit_of_mem_frontier, mem_closed_iff_bsup, mem_closure_iff_bsup, mem_closure_iff_iSup, mem_closure_tfae, mem_iff_iSup_of_isClosed, nhds_eq_pure
25
Total28

Ordinal

Definitions

NameCategoryTheorems
IsAcc πŸ“–MathDef
2 mathmath: isAcc_iff, IsAcc.mono
IsClosedBelow πŸ“–MathDef
1 mathmath: isClosedBelow_iff
instTopologicalSpace πŸ“–CompOp
12 mathmath: isOpen_singleton_iff, isOpen_iff, mem_closure_iff_bsup, isClosed_iff_bsup, instOrderTopology, accPt_subtype, mem_closure_iff_iSup, mem_closure_tfae, enumOrd_isNormal_iff_isClosed, isClosed_iff_iSup, nhds_eq_pure, isNormal_iff_strictMono_and_continuous

Theorems

NameKindAssumesProvesValidatesDepends On
accPt_subtype πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
partialOrder
AccPt
instTopologicalSpace
Filter.principal
Set.Elem
Set.Iio
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.preimage
β€”IsAcc.isSuccLimit
accPt_iff_nhds
exists_Ioc_subset_of_mem_nhds
orderTopology_of_ordConnected
instOrderTopology
Set.ordConnected_Iio
LT.lt.trans
Order.IsSuccLimit.bot_lt
Ioo_mem_nhds
OrderTopology.to_orderClosedTopology
lt_add_one
instZeroLEOneClass
instNeZeroOne
instAddLeftStrictMono
lt_of_le_of_lt
Order.lt_succ_iff
instNoMaxOrder
Subtype.coe_ne_coe
zero_add
Iio_mem_nhds
instClosedIciTopology
Subtype.instOrderClosedTopology
zero_lt_one
lt_one_iff_zero
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
Mathlib.Tactic.Push.not_and_eq
zero_or_succ_or_isSuccLimit
Order.lt_succ
LE.le.antisymm
Order.succ_le_iff
Order.le_of_lt_succ
SetCoe.ext
Order.le_succ_iff_eq_or_le
le_of_not_gt
not_le_of_gt
Filter.univ_mem
pos_iff_ne_zero
canonicallyOrderedAdd
Ioi_mem_nhds
instClosedIicTopology
Order.lt_add_one_iff
enumOrd_isNormal_iff_isClosed πŸ“–mathematicalBddAbove
Ordinal
Preorder.toLE
PartialOrder.toPreorder
partialOrder
Order.IsNormal
instLinearOrder
enumOrd
IsClosed
instTopologicalSpace
β€”enumOrd_strictMono
isClosed_iff_iSup
Order.IsNormal.map_iSup
bddAbove_of_small
small_range
UnivLE.small
UnivLE.self
OrderIso.apply_symm_apply
enumOrd_mem
Order.isNormal_iff
enumOrd_surjective
isClosed_iff_bsup
Order.IsSuccLimit.ne_bot
StrictMono.monotone
LT.lt.not_ge
Order.lt_succ
instNoMaxOrder
le_bsup
Order.IsSuccLimit.succ_lt
LE.le.trans
bsup_le
instOrderTopology πŸ“–mathematicalβ€”OrderTopology
Ordinal
instTopologicalSpace
PartialOrder.toPreorder
partialOrder
β€”β€”
isAcc_iff πŸ“–mathematicalβ€”IsAcc
Set.Nonempty
Ordinal
Set
Set.instInter
Set.Ioo
PartialOrder.toPreorder
partialOrder
β€”accPt_iff_nhds
Iio_mem_nhds
instClosedIciTopology
OrderTopology.to_orderClosedTopology
instOrderTopology
zero_lt_one
instZeroLEOneClass
instNeZeroOne
lt_one_iff_zero
Ioo_mem_nhds
Order.lt_succ
instNoMaxOrder
lt_of_le_of_ne
Order.lt_succ_iff
Order.succ_eq_add_one
exists_Ioc_subset_of_mem_nhds
pos_iff_ne_zero
canonicallyOrderedAdd
LT.lt.le
LT.lt.ne
isClosedBelow_iff πŸ“–mathematicalβ€”IsClosedBelow
Ordinal
Set
Set.instMembership
β€”accPt_subtype
isClosed_iff_clusterPt
AccPt.clusterPt
clusterPt_principal
isClosed_iff_bsup πŸ“–mathematicalβ€”IsClosed
Ordinal
instTopologicalSpace
Set
Set.instMembership
bsup
β€”isClosed_iff_iSup
toType_nonempty_iff_ne_zero
type_toType
WellOrderingRel.isWellOrder
bsup_eq_iSup
type_ne_zero_iff_nonempty
isClosed_iff_iSup πŸ“–mathematicalβ€”IsClosed
Ordinal
instTopologicalSpace
Set
Set.instMembership
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”mem_iff_iSup_of_isClosed
closure_subset_iff_isClosed
mem_closure_iff_iSup
isNormal_iff_strictMono_and_continuous πŸ“–mathematicalβ€”Order.IsNormal
Ordinal
instLinearOrder
StrictMono
PartialOrder.toPreorder
partialOrder
Continuous
instTopologicalSpace
β€”Order.isNormal_iff_strictMono_and_continuous
wellFoundedLT
instOrderTopology
isOpen_iff πŸ“–mathematicalβ€”IsOpen
Ordinal
instTopologicalSpace
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Set
Set.instHasSubset
Set.Ioo
β€”SuccOrder.isOpen_iff
instOrderTopology
instNoMaxOrder
isOpen_singleton_iff πŸ“–mathematicalβ€”IsOpen
Ordinal
instTopologicalSpace
Set
Set.instSingletonSet
Order.IsSuccLimit
PartialOrder.toPreorder
partialOrder
β€”SuccOrder.isOpen_singleton_iff
instOrderTopology
instNoMaxOrder
isSuccLimit_of_mem_frontier πŸ“–mathematicalOrdinal
Set
Set.instMembership
frontier
instTopologicalSpace
Order.IsSuccLimit
PartialOrder.toPreorder
partialOrder
β€”SuccOrder.isSuccLimit_of_mem_frontier
instOrderTopology
instNoMaxOrder
mem_closed_iff_bsup πŸ“–mathematicalβ€”Ordinal
Set
Set.instMembership
bsup
β€”mem_closure_iff_bsup
IsClosed.closure_eq
mem_closure_iff_bsup πŸ“–mathematicalβ€”Ordinal
Set
Set.instMembership
closure
instTopologicalSpace
bsup
β€”List.TFAE.out
mem_closure_tfae
mem_closure_iff_iSup πŸ“–mathematicalβ€”Ordinal
Set
Set.instMembership
closure
instTopologicalSpace
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”List.TFAE.out
mem_closure_tfae
mem_closure_tfae πŸ“–mathematicalβ€”List.TFAE
Ordinal
Set
Set.instMembership
closure
instTopologicalSpace
Set.instInter
Set.Iic
PartialOrder.toPreorder
partialOrder
Set.Nonempty
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Set.instHasSubset
BddAbove
Preorder.toLE
zero
bsup
iSup
β€”Set.inter_comm
nhdsWithin_inter'
SuccOrder.nhdsLE_eq_nhds
instClosedIciTopology
OrderTopology.to_orderClosedTopology
instOrderTopology
Set.eq_empty_or_nonempty
IsClosed.closure_eq
T2Space.t1Space
OrderClosedTopology.to_t2Space
IsLUB.csSup_eq
isLUB_of_mem_closure
Set.inter_subset_left
BddAbove.mono
Set.inter_subset_right
bddAbove_Iic
isLUB_csSup
succ_ne_zero
le_antisymm
bsup_le
csSup_le
Eq.trans_le
le_bsup
LE.le.trans_lt
Order.lt_succ
instNoMaxOrder
toType_nonempty_iff_ne_zero
type_toType
closure_mono
Set.range_subset_iff
csSup_mem_closure
Set.range_nonempty
bddAbove_range
List.tfae_of_cycle
mem_iff_iSup_of_isClosed πŸ“–mathematicalβ€”Ordinal
Set
Set.instMembership
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”mem_closure_iff_iSup
IsClosed.closure_eq
nhds_eq_pure πŸ“–mathematicalβ€”nhds
Ordinal
instTopologicalSpace
Filter
Filter.instPure
Order.IsSuccLimit
PartialOrder.toPreorder
partialOrder
β€”SuccOrder.nhds_eq_pure
instOrderTopology
instNoMaxOrder

Ordinal.IsAcc

Theorems

NameKindAssumesProvesValidatesDepends On
forall_lt πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Set.Nonempty
Set
Set.instInter
Set.Ioo
β€”Ordinal.isAcc_iff
inter_Ioo_nonempty πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Set.Nonempty
Set
Set.instInter
Set.Ioo
β€”forall_lt
isSuccLimit πŸ“–mathematicalβ€”Order.IsSuccLimit
Ordinal
PartialOrder.toPreorder
Ordinal.partialOrder
β€”Ordinal.isSuccLimit_iff
Ordinal.isAcc_iff
Order.isSuccPrelimit_of_succ_ne
lt_of_lt_of_le
Order.lt_succ
Ordinal.instNoMaxOrder
Eq.le
LE.le.not_gt
Order.succ_le_iff
mono πŸ“–mathematicalSet
Ordinal
Set.instHasSubset
Ordinal.IsAccβ€”Ordinal.isAcc_iff
pos πŸ“–mathematicalβ€”Ordinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Ordinal.zero
β€”pos_iff_ne_zero
Ordinal.canonicallyOrderedAdd
Ordinal.isAcc_iff

Ordinal.IsClosedBelow

Theorems

NameKindAssumesProvesValidatesDepends On
forall_lt πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Set
Set.instMembership
β€”Ordinal.isClosedBelow_iff
iInter πŸ“–mathematicalOrdinal.IsClosedBelowSet.iInter
Ordinal
β€”sInter
sInter πŸ“–mathematicalOrdinal.IsClosedBelowSet.sInter
Ordinal
β€”Ordinal.isClosedBelow_iff
forall_lt
Ordinal.IsAcc.mono
Set.sInter_subset_of_mem

---

← Back to Index