Topology of ordinals #
We prove some miscellaneous results involving the order topology of ordinals.
Main results #
Ordinal.isClosed_iff_iSup/Ordinal.isClosed_iff_bsup: A set of ordinals is closed iff it's closed under suprema.Ordinal.isNormal_iff_strictMono_and_continuous: A characterization of normal ordinal functions.Ordinal.enumOrd_isNormal_iff_isClosed: The function enumerating the ordinals of a set is normal iff the set is closed.
@[deprecated SuccOrder.isOpen_singleton_iff (since := "2026-01-20")]
@[deprecated SuccOrder.nhds_eq_pure (since := "2026-01-20")]
@[deprecated SuccOrder.isOpen_iff (since := "2026-01-20")]
theorem
Ordinal.mem_closure_tfae
(a : Ordinal.{u})
(s : Set Ordinal.{u})
:
[a โ closure s, a โ closure (s โฉ Set.Iic a), (s โฉ Set.Iic a).Nonempty โง sSup (s โฉ Set.Iic a) = a, โ t โ s, t.Nonempty โง BddAbove t โง sSup t = a, โ (o : Ordinal.{u}),
o โ 0 โง โ (f : (x : Ordinal.{u}) โ x < o โ Ordinal.{u}), (โ (x : Ordinal.{u}) (hx : x < o), f x hx โ s) โง o.bsup f = a, โ (ฮน : Type u), Nonempty ฮน โง โ (f : ฮน โ Ordinal.{u}), (โ (i : ฮน), f i โ s) โง โจ (i : ฮน), f i = a].TFAE
theorem
Ordinal.mem_iff_iSup_of_isClosed
{s : Set Ordinal.{u}}
{a : Ordinal.{u}}
(hs : IsClosed s)
:
theorem
Ordinal.mem_closure_iff_bsup
{s : Set Ordinal.{u}}
{a : Ordinal.{u}}
:
a โ closure s โ โ (o : Ordinal.{u}) (_ : o โ 0) (f : (a : Ordinal.{u}) โ a < o โ Ordinal.{u}),
(โ (i : Ordinal.{u}) (hi : i < o), f i hi โ s) โง o.bsup f = a
theorem
Ordinal.mem_closed_iff_bsup
{s : Set Ordinal.{u}}
{a : Ordinal.{u}}
(hs : IsClosed s)
:
a โ s โ โ (o : Ordinal.{u}) (_ : o โ 0) (f : (a : Ordinal.{u}) โ a < o โ Ordinal.{u}),
(โ (i : Ordinal.{u}) (hi : i < o), f i hi โ s) โง o.bsup f = a
theorem
Ordinal.isClosed_iff_bsup
{s : Set Ordinal.{u}}
:
IsClosed s โ โ {o : Ordinal.{u}},
o โ 0 โ
โ (f : (a : Ordinal.{u}) โ a < o โ Ordinal.{u}), (โ (i : Ordinal.{u}) (hi : i < o), f i hi โ s) โ o.bsup f โ s
@[deprecated SuccOrder.isSuccLimit_of_mem_frontier (since := "2026-01-20")]
theorem
Ordinal.isSuccLimit_of_mem_frontier
{s : Set Ordinal.{u}}
{a : Ordinal.{u}}
(ha : a โ frontier s)
:
@[deprecated Order.isNormal_iff_strictMono_and_continuous (since := "2025-08-21")]
An ordinal is an accumulation point of a set of ordinals if it is positive and there are elements in the set arbitrarily close to the ordinal from below.
Equations
Instances For
A set of ordinals is closed below an ordinal if it contains all of its accumulation points below the ordinal.
Equations
Instances For
theorem
Ordinal.IsAcc.forall_lt
{o : Ordinal.{u_1}}
{S : Set Ordinal.{u_1}}
(h : o.IsAcc S)
(p : Ordinal.{u_1})
:
theorem
Ordinal.IsAcc.mono
{o : Ordinal.{u_1}}
{S T : Set Ordinal.{u_1}}
(h : S โ T)
(ho : o.IsAcc S)
:
o.IsAcc T
theorem
Ordinal.IsAcc.inter_Ioo_nonempty
{o : Ordinal.{u_1}}
{S : Set Ordinal.{u_1}}
(hS : o.IsAcc S)
{p : Ordinal.{u_1}}
(hp : p < o)
:
theorem
Ordinal.IsClosedBelow.forall_lt
{S : Set Ordinal.{u_1}}
{o : Ordinal.{u_1}}
:
IsClosedBelow S o โ โ p < o, p.IsAcc S โ p โ S
Alias of the forward direction of Ordinal.isClosedBelow_iff.
theorem
Ordinal.IsClosedBelow.sInter
{o : Ordinal.{u_1}}
{S : Set (Set Ordinal.{u_1})}
(h : โ C โ S, IsClosedBelow C o)
:
IsClosedBelow (โโ S) o
theorem
Ordinal.IsClosedBelow.iInter
{ฮน : Type u}
{f : ฮน โ Set Ordinal.{u_1}}
{o : Ordinal.{u_1}}
(h : โ (i : ฮน), IsClosedBelow (f i) o)
:
IsClosedBelow (โ (i : ฮน), f i) o