Documentation

Mathlib.Topology.Order.SuccPred

Order topologies of successor or predecessor orders #

This file proves miscellaneous results under the assumption of OrderTopology plus either of SuccOrder or PredOrder.

theorem SuccOrder.isOpen_iff {α : Type u_1} [LinearOrder α] [TopologicalSpace α] [OrderTopology α] [SuccOrder α] [NoMaxOrder α] {s : Set α} :
IsOpen s os, Order.IsSuccLimit oa < o, Set.Ioo a o s
theorem PredOrder.isOpen_iff {α : Type u_1} [LinearOrder α] [TopologicalSpace α] [OrderTopology α] [PredOrder α] [NoMinOrder α] {s : Set α} :
IsOpen s os, Order.IsPredLimit o∃ (a : α), o < a Set.Ioo o a s