Order topologies of successor or predecessor orders #
This file proves miscellaneous results under the assumption of OrderTopology plus either of
SuccOrder or PredOrder.
theorem
SuccOrder.isOpen_singleton_of_not_isSuccPrelimit
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderTopology α]
{a : α}
[SuccOrder α]
(ha : ¬Order.IsSuccPrelimit a)
:
theorem
SuccOrder.isOpen_singleton_iff
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderTopology α]
{a : α}
[SuccOrder α]
[NoMaxOrder α]
:
theorem
SuccOrder.nhds_eq_pure
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderTopology α]
[SuccOrder α]
[NoMaxOrder α]
{a : α}
:
theorem
SuccOrder.isOpen_iff
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderTopology α]
[SuccOrder α]
[NoMaxOrder α]
{s : Set α}
:
theorem
SuccOrder.isSuccLimit_of_mem_frontier
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderTopology α]
[SuccOrder α]
[NoMaxOrder α]
{a : α}
{s : Set α}
(ha : a ∈ frontier s)
:
theorem
PredOrder.isOpen_singleton_of_not_isPredPrelimit
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderTopology α]
{a : α}
[PredOrder α]
(ha : ¬Order.IsPredPrelimit a)
:
theorem
PredOrder.isOpen_singleton_iff
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderTopology α]
{a : α}
[PredOrder α]
[NoMinOrder α]
:
theorem
PredOrder.nhds_eq_pure
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderTopology α]
[PredOrder α]
[NoMinOrder α]
{a : α}
:
theorem
PredOrder.isOpen_iff
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderTopology α]
[PredOrder α]
[NoMinOrder α]
{s : Set α}
:
theorem
PredOrder.isPredLimit_of_mem_frontier
{α : Type u_1}
[LinearOrder α]
[TopologicalSpace α]
[OrderTopology α]
[PredOrder α]
[NoMinOrder α]
{a : α}
{s : Set α}
(ha : a ∈ frontier s)
: