Documentation Verification Report

SuccPred

📁 Source: Mathlib/Topology/Order/SuccPred.lean

Statistics

MetricCount
Definitions0
TheoremsisOpen_iff, isOpen_singleton_iff, isOpen_singleton_of_not_isPredPrelimit, isPredLimit_of_mem_frontier, nhds_eq_pure, isOpen_iff, isOpen_singleton_iff, isOpen_singleton_of_not_isSuccPrelimit, isSuccLimit_of_mem_frontier, nhds_eq_pure
10
Total10

PredOrder

Theorems

NameKindAssumesProvesValidatesDepends On
isOpen_iff 📖mathematicalIsOpen
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instHasSubset
Set.Ioo
isOpen_iff_mem_nhds
Filter.HasBasis.mem_iff
hasBasis_nhds_Ioc_of_exists_gt
not_isMax_iff
Order.IsPredLimit.not_isMax
nhds_eq_pure
instIsEmptyFalse
isOpen_singleton_iff 📖mathematicalIsOpen
Set
Set.instSingletonSet
Order.IsPredLimit
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SuccOrder.isOpen_singleton_iff
instOrderTopologyOrderDual
OrderDual.noMaxOrder
Iff.not
Order.isSuccLimit_toDual_iff
isOpen_singleton_of_not_isPredPrelimit 📖mathematicalOrder.IsPredPrelimit
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsOpen
Set
Set.instSingletonSet
SuccOrder.isOpen_singleton_of_not_isSuccPrelimit
instOrderTopologyOrderDual
Iff.not
Order.isSuccPrelimit_toDual_iff
isPredLimit_of_mem_frontier 📖mathematicalSet
Set.instMembership
frontier
Order.IsPredLimit
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Order.isSuccLimit_toDual_iff
SuccOrder.isSuccLimit_of_mem_frontier
instOrderTopologyOrderDual
OrderDual.noMaxOrder
nhds_eq_pure 📖mathematicalnhds
Filter
Filter.instPure
Order.IsPredLimit
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isOpen_singleton_iff_nhds_eq_pure
isOpen_singleton_iff

SuccOrder

Theorems

NameKindAssumesProvesValidatesDepends On
isOpen_iff 📖mathematicalIsOpen
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instHasSubset
Set.Ioo
isOpen_iff_mem_nhds
Filter.HasBasis.mem_iff
hasBasis_nhds_Ioc_of_exists_lt
not_isMin_iff
Order.IsSuccLimit.not_isMin
nhds_eq_pure
instIsEmptyFalse
isOpen_singleton_iff 📖mathematicalIsOpen
Set
Set.instSingletonSet
Order.IsSuccLimit
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Finite.instDiscreteTopology
T2Space.t1Space
OrderClosedTopology.to_t2Space
OrderTopology.to_orderClosedTopology
Finite.of_subsingleton
WellFoundedGT.toIsSuccArchimedean
IsWellOrder.toIsWellFounded
isWellOrder_gt
Finite.to_wellFoundedGT
mem_nhds_iff_exists_Ioo_subset'
Order.IsSuccLimit.not_isMin
not_isMax
IsOpen.mem_nhds
Set.mem_singleton
Order.IsSuccLimit.isSuccPrelimit
Order.succ_eq_iff_covBy
Order.lt_succ
LE.le.trans_lt
LT.lt.succ_le
Order.not_isSuccLimit_iff
Order.Iio_succ
IsMin.Iic_eq
isOpen_Iio
instClosedIciTopology
isOpen_singleton_of_not_isSuccPrelimit
isOpen_singleton_of_not_isSuccPrelimit 📖mathematicalOrder.IsSuccPrelimit
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsOpen
Set
Set.instSingletonSet
Order.not_isSuccPrelimit_iff_exists_covBy
CovBy.Ioi_eq
isOpen_Ioi
instClosedIicTopology
OrderTopology.to_orderClosedTopology
CovBy.Ioo_eq_Ioc
Order.covBy_succ_of_not_isMax
CovBy.Ioc_eq
isOpen_Ioo
isSuccLimit_of_mem_frontier 📖mathematicalSet
Set.instMembership
frontier
Order.IsSuccLimit
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Iff.not_left
isOpen_singleton_iff
frontier_eq_closure_inter_closure
nhds_eq_pure 📖mathematicalnhds
Filter
Filter.instPure
Order.IsSuccLimit
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
isOpen_singleton_iff_nhds_eq_pure
isOpen_singleton_iff

---

← Back to Index