Documentation Verification Report

AsymptoticCone

πŸ“ Source: Mathlib/Topology/Algebra/AsymptoticCone.lean

Statistics

MetricCount
DefinitionsasymptoticNhds, asymptoticCone
2
TheoremsasymptoticNhds_bind_asymptoticNhds, asymptoticNhds_bind_nhds, asymptoticNhds_eq_smul, asymptoticNhds_eq_smul_vadd, asymptoticNhds_smul, asymptoticNhds_vadd_pure, asymptoticNhds_zero, instNeBotAsymptoticNhds, nhds_bind_asymptoticNhds, vadd_asymptoticNhds, asymptoticCone, smul_vadd_mem_of_isClosed_of_mem_asymptoticCone, smul_vadd_mem_of_mem_nhds_of_mem_asymptoticCone, asymptoticNhds_vadd_const, atTop_smul_const_tendsto_asymptoticNhds, atTop_smul_nhds_tendsto_asymptoticNhds, const_vadd_asymptoticNhds, asymptoticCone_biUnion, smul_vadd_mem_of_isClosed_of_mem_asymptoticCone, asymptoticCone_affineSubspace, asymptoticCone_asymptoticCone, asymptoticCone_biUnion, asymptoticCone_closure, asymptoticCone_empty, asymptoticCone_eq_closure_of_forall_smul_mem, asymptoticCone_iUnion_of_finite, asymptoticCone_mono, asymptoticCone_nonempty, asymptoticCone_sUnion, asymptoticCone_submodule, asymptoticCone_union, asymptoticCone_univ, isClosed_asymptoticCone, mem_asymptoticCone_iff, smul_mem_asymptoticCone, smul_mem_asymptoticCone_iff, zero_mem_asymptoticCone
37
Total39

AffineSpace

Definitions

NameCategoryTheorems
asymptoticNhds πŸ“–CompOp
15 mathmath: asymptoticNhds_smul, cobounded_eq_iSup_sphere_asymptoticNhds, asymptoticNhds_bind_asymptoticNhds, asymptoticNhds_vadd_pure, Filter.Tendsto.atTop_smul_nhds_tendsto_asymptoticNhds, instNeBotAsymptoticNhds, nhds_bind_asymptoticNhds, asymptoticNhds_zero, vadd_asymptoticNhds, Filter.Tendsto.atTop_smul_const_tendsto_asymptoticNhds, asymptoticNhds_le_cobounded, mem_asymptoticCone_iff, asymptoticNhds_eq_smul, asymptoticNhds_eq_smul_vadd, asymptoticNhds_bind_nhds

Theorems

NameKindAssumesProvesValidatesDepends On
asymptoticNhds_bind_asymptoticNhds πŸ“–mathematicalβ€”Filter.bind
asymptoticNhds
addGroupIsAddTorsor
AddCommGroup.toAddGroup
β€”Filter.ext'
asymptoticNhds_eq_smul
Filter.eventually_bind
Filter.mapβ‚‚_smul
Filter.map_prod_eq_mapβ‚‚
Filter.eventually_map
nhds_bind_asymptoticNhds
Filter.map_snd_prod
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
Nontrivial.to_nonempty
EuclideanDomain.toNontrivial
Filter.eventually_congr
Filter.mp_mem
Filter.Tendsto.eventually
Filter.tendsto_fst
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
Filter.univ_mem'
asymptoticNhds_smul
asymptoticNhds_bind_nhds πŸ“–mathematicalβ€”Filter.bind
asymptoticNhds
nhds
β€”le_antisymm
AddTorsor.nonempty
asymptoticNhds_eq_smul_vadd
Filter.vadd_pure
nhds_bind_nhds
Filter.mem_bind
Filter.bind_map
Filter.smul_mem_smul
Filter.inter_mem
Filter.Ioi_mem_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
EuclideanDomain.toNontrivial
Set.forall_mem_image2
Set.preimage_preimage
vsub_vadd
Filter.Tendsto.vsub
Filter.tendsto_id
tendsto_const_nhds
vadd_vsub
Filter.mp_mem
smul_mem_nhds_smulβ‚€
ContinuousSMul.continuousConstSMul
LT.lt.ne'
Filter.univ_mem'
Set.image_smul
Set.forall_mem_image
Set.smul_mem_smul
Filter.bind_mono
le_rfl
Filter.Eventually.of_forall
pure_le_nhds
asymptoticNhds_eq_smul πŸ“–mathematicalβ€”asymptoticNhds
addGroupIsAddTorsor
AddCommGroup.toAddGroup
Filter
Filter.instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
β€”le_antisymm
iSup_le
Filter.add_pure
Filter.map_mapβ‚‚
Filter.mp_mem
Filter.Tendsto.eventually
Filter.tendsto_fst
Filter.eventually_ne_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
EuclideanDomain.toNontrivial
Filter.univ_mem'
smul_add
smul_inv_smulβ‚€
Filter.map_congr
Filter.map_map
Filter.map_mono
Filter.Tendsto.prodMk
Filter.Tendsto.add
IsTopologicalAddGroup.toContinuousAdd
Filter.tendsto_snd
Filter.Tendsto.smul_const
Filter.Tendsto.inv_tendsto_atTop
zero_smul
add_zero
LE.le.trans'
le_iSup
asymptoticNhds_eq_smul_vadd πŸ“–mathematicalβ€”asymptoticNhds
HVAdd.hVAdd
Filter
instHVAdd
Filter.instVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
Filter.instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
Filter.instPure
β€”asymptoticNhds_eq_smul
asymptoticNhds_vadd_pure
asymptoticNhds_smul πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
asymptoticNhds
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”AddTorsor.nonempty
asymptoticNhds_eq_smul_vadd
Homeomorph.map_nhds_eq
ContinuousSMul.continuousConstSMul
LT.lt.ne'
Filter.mapβ‚‚_map_right
smul_smul
OrderIso.map_atTop
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
asymptoticNhds_vadd_pure πŸ“–mathematicalβ€”HVAdd.hVAdd
Filter
instHVAdd
Filter.instVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
asymptoticNhds
addGroupIsAddTorsor
Filter.instPure
β€”asymptoticNhds.eq_1
Filter.vadd_pure
Filter.map_iSup
Filter.map_map
Equiv.iSup_congr
AddSemigroupAction.add_vadd
asymptoticNhds_zero πŸ“–mathematicalβ€”asymptoticNhds
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Top.top
Filter
Filter.instTop
β€”AddTorsor.nonempty
asymptoticNhds_vadd_pure
Filter.vadd_pure
Function.Surjective.filter_map_top
Equiv.surjective
instNeBotAsymptoticNhds πŸ“–mathematicalβ€”Filter.NeBot
asymptoticNhds
β€”AddTorsor.nonempty
asymptoticNhds_eq_smul_vadd
Filter.vadd.instNeBot
Filter.smul.instNeBot
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
Nontrivial.to_nonempty
EuclideanDomain.toNontrivial
nhds_neBot
Filter.pure_neBot
nhds_bind_asymptoticNhds πŸ“–mathematicalβ€”Filter.bind
nhds
asymptoticNhds
β€”le_antisymm
AddTorsor.nonempty
asymptoticNhds_eq_smul_vadd
Filter.vadd_pure
nhds_bind_nhds
Filter.pure_bind
Filter.bind_mono
pure_le_nhds
Filter.EventuallyLE.rfl
vadd_asymptoticNhds πŸ“–mathematicalβ€”HVAdd.hVAdd
Filter
instHVAdd
Filter.instVAddFilter
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
asymptoticNhds
β€”AddTorsor.nonempty
asymptoticNhds_vadd_pure
Filter.vadd_pure
Filter.map_map
VAddCommClass.vadd_comm
vaddCommClass_self

Convex

Theorems

NameKindAssumesProvesValidatesDepends On
asymptoticCone πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
asymptoticCone
addGroupIsAddTorsor
β€”Set.eq_empty_or_nonempty
asymptoticCone_empty
convex_empty
mem_asymptoticCone_iff
Filter.Tendsto.frequently
Filter.Tendsto.asymptoticNhds_vadd_const
Filter.Tendsto.atTop_smul_const_tendsto_asymptoticNhds
Filter.tendsto_id
Filter.Eventually.frequently
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
Nontrivial.to_nonempty
EuclideanDomain.toNontrivial
Filter.mp_mem
Filter.eventually_ge_atTop
Filter.univ_mem'
smul_add
smul_smul
smul_vadd_mem_of_isClosed_of_mem_asymptoticCone
segment_subset
affineSegment_eq_segment
IsStrictOrderedRing.toIsOrderedRing
mem_vadd_const_affineSegment
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.add_eq_eval₁
zero_add
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
asymptoticCone_closure
instIsTopologicalAddTorsor
closure
ContinuousSMul.continuousConstSMul
isClosed_closure
smul_vadd_mem_of_isClosed_of_mem_asymptoticCone πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Set
Set.instMembership
asymptoticCone
addGroupIsAddTorsor
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
β€”StarConvex.smul_vadd_mem_of_isClosed_of_mem_asymptoticCone
smul_vadd_mem_of_mem_nhds_of_mem_asymptoticCone πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Set
Filter
Filter.instMembership
nhds
Set.instMembership
asymptoticCone
addGroupIsAddTorsor
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
β€”Filter.frequently_const
Filter.prod.instNeBot
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
Nontrivial.to_nonempty
EuclideanDomain.toNontrivial
nhds_neBot
Filter.Frequently.mp
Filter.frequently_map
Filter.map_prod_eq_mapβ‚‚
Filter.mapβ‚‚_smul
Filter.vadd_pure
AffineSpace.asymptoticNhds_eq_smul_vadd
mem_asymptoticCone_iff
Continuous.tendsto'
Continuous.vadd
IsTopologicalAddTorsor.toContinuousVAdd
instIsTopologicalAddTorsor
Continuous.neg
IsTopologicalAddGroup.toContinuousNeg
Continuous.const_smul
ContinuousSMul.continuousConstSMul
continuous_id'
continuous_const
neg_add_cancel_left
Filter.mp_mem
Filter.Tendsto.comp
Filter.tendsto_snd
Filter.Tendsto.eventually
Filter.tendsto_fst
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
Filter.univ_mem'
segment_subset
vsub_vadd_eq_vsub_sub
vsub_self
zero_sub
neg_neg
vadd_vsub
SameRay.pos_smul_right
PosSMulMono.toSMulPosMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedModule.toPosSMulMono
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
IsScalarTower.left
SameRay.sameRay_nonneg_smul_left

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
asymptoticNhds_vadd_const πŸ“–mathematicalFilter.Tendsto
AffineSpace.asymptoticNhds
addGroupIsAddTorsor
AddCommGroup.toAddGroup
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
β€”AffineSpace.asymptoticNhds_vadd_pure
Filter.vadd_pure
comp
Filter.tendsto_map
atTop_smul_const_tendsto_asymptoticNhds πŸ“–mathematicalFilter.Tendsto
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
AffineSpace.asymptoticNhds
addGroupIsAddTorsor
β€”atTop_smul_nhds_tendsto_asymptoticNhds
tendsto_const_nhds
atTop_smul_nhds_tendsto_asymptoticNhds πŸ“–mathematicalFilter.Tendsto
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
AffineSpace.asymptoticNhds
addGroupIsAddTorsor
β€”AffineSpace.asymptoticNhds_eq_smul
Filter.mapβ‚‚_smul
Filter.map_prod_eq_mapβ‚‚
comp
Filter.tendsto_map
prodMk
const_vadd_asymptoticNhds πŸ“–mathematicalFilter.Tendsto
AffineSpace.asymptoticNhds
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
β€”AffineSpace.vadd_asymptoticNhds
Filter.map_vadd
comp
Filter.tendsto_map

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
asymptoticCone_biUnion πŸ“–mathematicalβ€”asymptoticCone
Set.iUnion
Finset
instMembership
β€”asymptoticCone_biUnion
finite_toSet

StarConvex

Theorems

NameKindAssumesProvesValidatesDepends On
smul_vadd_mem_of_isClosed_of_mem_asymptoticCone πŸ“–mathematicalStarConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Set
Set.instMembership
asymptoticCone
addGroupIsAddTorsor
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
β€”isClosed_iff_frequently
Filter.Tendsto.frequently
Filter.Tendsto.vadd_const
IsTopologicalAddTorsor.toContinuousVAdd
instIsTopologicalAddTorsor
Filter.Tendsto.const_smul
ContinuousSMul.continuousConstSMul
Filter.tendsto_snd
Filter.Frequently.mp
Filter.frequently_map
Filter.map_prod_eq_mapβ‚‚
Filter.mapβ‚‚_smul
Filter.vadd_pure
AffineSpace.asymptoticNhds_eq_smul_vadd
mem_asymptoticCone_iff
Filter.mp_mem
Filter.Tendsto.eventually
Filter.tendsto_fst
Filter.eventually_ge_atTop
Filter.univ_mem'
segment_subset
SameRay.congr_simp
vadd_vsub
vadd_vsub_vadd_cancel_right
SameRay.nonneg_smul_right
PosSMulMono.toSMulPosMono
IsStrictOrderedRing.toIsOrderedRing
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedModule.toPosSMulMono
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
IsScalarTower.left
SameRay.sameRay_nonneg_smul_left
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono

(root)

Definitions

NameCategoryTheorems
asymptoticCone πŸ“–CompOp
22 mathmath: not_bounded_iff_exists_ne_zero_mem_asymptoticCone, asymptoticCone_empty, asymptoticCone_asymptoticCone, isBounded_iff_asymptoticCone_subset_singleton, asymptoticCone_affineSubspace, Finset.asymptoticCone_biUnion, asymptoticCone_iUnion_of_finite, zero_mem_asymptoticCone, asymptoticCone_biUnion, asymptoticCone_sUnion, asymptoticCone_union, isClosed_asymptoticCone, asymptoticCone_closure, asymptoticCone_nonempty, mem_asymptoticCone_iff, asymptoticCone_subset_singleton_of_bounded, smul_mem_asymptoticCone_iff, asymptoticCone_submodule, asymptoticCone_mono, asymptoticCone_eq_closure_of_forall_smul_mem, asymptoticCone_univ, Convex.asymptoticCone

Theorems

NameKindAssumesProvesValidatesDepends On
asymptoticCone_affineSubspace πŸ“–mathematicalSet.Nonempty
SetLike.coe
AffineSubspace
DivisionRing.toRing
Field.toDivisionRing
AffineSubspace.instSetLike
asymptoticCone
closure
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
AffineSubspace.direction
β€”Set.ext
AffineSpace.asymptoticNhds_vadd_pure
Filter.vadd_pure
AffineSubspace.vadd_mem_iff_mem_direction
asymptoticCone_asymptoticCone πŸ“–mathematicalβ€”asymptoticCone
addGroupIsAddTorsor
AddCommGroup.toAddGroup
β€”Set.ext
AffineSpace.asymptoticNhds_bind_asymptoticNhds
asymptoticCone_biUnion πŸ“–mathematicalβ€”asymptoticCone
Set.iUnion
Set
Set.instMembership
β€”Set.Finite.induction_on
Set.iUnion_congr_Prop
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
asymptoticCone_empty
Set.iUnion_iUnion_eq_or_left
asymptoticCone_union
asymptoticCone_closure πŸ“–mathematicalβ€”asymptoticCone
closure
β€”Set.ext
AffineSpace.asymptoticNhds_bind_nhds
asymptoticCone_empty πŸ“–mathematicalβ€”asymptoticCone
Set
Set.instEmptyCollection
β€”Set.eq_empty_iff_forall_notMem
Filter.frequently_false
asymptoticCone_eq_closure_of_forall_smul_mem πŸ“–mathematicalSet
Set.instMembership
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
asymptoticCone
addGroupIsAddTorsor
closure
β€”Set.ext
mem_closure_iff_frequently
Filter.map_snd_prod
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
Nontrivial.to_nonempty
EuclideanDomain.toNontrivial
Filter.frequently_map
mem_asymptoticCone_iff
AffineSpace.asymptoticNhds_eq_smul
Filter.mapβ‚‚_smul
Filter.map_prod_eq_mapβ‚‚
Filter.frequently_congr
Filter.mp_mem
Filter.Tendsto.eventually
Filter.tendsto_fst
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
Filter.univ_mem'
inv_smul_smulβ‚€
LT.lt.ne'
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
asymptoticCone_iUnion_of_finite πŸ“–mathematicalβ€”asymptoticCone
Set.iUnion
β€”Set.sUnion_range
asymptoticCone_sUnion
Set.finite_range
Set.biUnion_range
asymptoticCone_mono πŸ“–mathematicalSet
Set.instHasSubset
asymptoticConeβ€”Filter.Frequently.mono
asymptoticCone_nonempty πŸ“–mathematicalβ€”Set.Nonempty
asymptoticCone
β€”Function.mtr
asymptoticCone_empty
zero_mem_asymptoticCone
asymptoticCone_sUnion πŸ“–mathematicalβ€”asymptoticCone
Set.sUnion
Set.iUnion
Set
Set.instMembership
β€”Set.sUnion_eq_biUnion
asymptoticCone_biUnion
asymptoticCone_submodule πŸ“–mathematicalβ€”asymptoticCone
addGroupIsAddTorsor
AddCommGroup.toAddGroup
SetLike.coe
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Submodule.setLike
closure
β€”asymptoticCone_eq_closure_of_forall_smul_mem
Submodule.smul_mem
asymptoticCone_union πŸ“–mathematicalβ€”asymptoticCone
Set
Set.instUnion
β€”Set.ext
asymptoticCone_univ πŸ“–mathematicalβ€”asymptoticCone
Set.univ
β€”AffineSubspace.top_coe
asymptoticCone_affineSubspace
Set.univ_nonempty
AddTorsor.nonempty
AffineSubspace.direction_top
Submodule.top_coe
closure_univ
isClosed_asymptoticCone πŸ“–mathematicalβ€”IsClosed
asymptoticCone
β€”AddTorsor.nonempty
isClosed_iff_frequently
AffineSpace.nhds_bind_asymptoticNhds
mem_asymptoticCone_iff πŸ“–mathematicalβ€”Set
Set.instMembership
asymptoticCone
Filter.Frequently
AffineSpace.asymptoticNhds
β€”β€”
smul_mem_asymptoticCone πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Set
Set.instMembership
asymptoticCone
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”LE.le.eq_or_lt
zero_smul
zero_mem_asymptoticCone
asymptoticCone_nonempty
smul_mem_asymptoticCone_iff
smul_mem_asymptoticCone_iff πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Set
Set.instMembership
asymptoticCone
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”AffineSpace.asymptoticNhds_smul
zero_mem_asymptoticCone πŸ“–mathematicalβ€”Set
Set.instMembership
asymptoticCone
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Set.Nonempty
β€”Function.mtr
asymptoticCone_empty
AffineSpace.asymptoticNhds_zero

---

← Back to Index