Documentation

Mathlib.Topology.Algebra.AsymptoticCone

Asymptotic cone of a set #

This file defines the asymptotic cone of a set in a topological affine space.

Implementation details #

The asymptotic cone of a set $A$ is usually defined as the set of points $v$ for which there exist sequences $t_n > 0$ and $x_n \in A$ such that $t_n \to 0$ and $t_n x_n \to v$. We take a different approach here using filters: we define the asymptotic cone of s as the set of vectors v such that โˆƒแถ  p in Filter.atTop โ€ข ๐“ v, p โˆˆ s holds.

Main definitions #

Main statements #

@[irreducible]
def AffineSpace.asymptoticNhds (k : Type u_1) {V : Type u_2} (P : Type u_3) [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] (v : V) :

In a topological affine space P over k, AffineSpace.asymptoticNhds k P v is the filter of neighborhoods at infinity in directions near v. In a topological vector space, this is the filter Filter.atTop โ€ข ๐“ v. To support affine spaces, the actual definition is different and should be considered an implementation detail. Use AffineSpace.asymptoticNhds_eq_smul or AffineSpace.asymptoticNhds_eq_smul_vadd for unfolding.

Equations
    Instances For
      theorem Filter.Tendsto.asymptoticNhds_vadd_const {k : Type u_1} {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] {ฮฑ : Type u_4} {l : Filter ฮฑ} {f : ฮฑ โ†’ V} {v : V} (p : P) (hf : Tendsto f l (AffineSpace.asymptoticNhds k V v)) :
      Tendsto (fun (x : ฮฑ) => f x +แตฅ p) l (AffineSpace.asymptoticNhds k P v)
      theorem Filter.Tendsto.const_vadd_asymptoticNhds {k : Type u_1} {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] {ฮฑ : Type u_4} {l : Filter ฮฑ} {f : ฮฑ โ†’ P} {v : V} (u : V) (hf : Tendsto f l (AffineSpace.asymptoticNhds k P v)) :
      Tendsto (fun (x : ฮฑ) => u +แตฅ f x) l (AffineSpace.asymptoticNhds k P v)
      theorem Filter.Tendsto.atTop_smul_nhds_tendsto_asymptoticNhds {k : Type u_1} {V : Type u_2} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [TopologicalSpace V] {ฮฑ : Type u_4} {l : Filter ฮฑ} [TopologicalSpace k] [OrderTopology k] [IsStrictOrderedRing k] [IsTopologicalAddGroup V] [ContinuousSMul k V] {f : ฮฑ โ†’ k} {g : ฮฑ โ†’ V} {v : V} (hf : Tendsto f l atTop) (hg : Tendsto g l (nhds v)) :
      Tendsto (fun (x : ฮฑ) => f x โ€ข g x) l (AffineSpace.asymptoticNhds k V v)
      theorem Filter.Tendsto.atTop_smul_const_tendsto_asymptoticNhds {k : Type u_1} {V : Type u_2} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [TopologicalSpace V] {ฮฑ : Type u_4} {l : Filter ฮฑ} [TopologicalSpace k] [OrderTopology k] [IsStrictOrderedRing k] [IsTopologicalAddGroup V] [ContinuousSMul k V] {f : ฮฑ โ†’ k} (v : V) (hf : Tendsto f l atTop) :
      Tendsto (fun (x : ฮฑ) => f x โ€ข v) l (AffineSpace.asymptoticNhds k V v)
      def asymptoticCone (k : Type u_1) {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] (s : Set P) :
      Set V

      The set of directions v for which the set has points arbitrarily far in directions near v.

      Equations
        Instances For
          theorem asymptoticCone_mono {k : Type u_1} {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] {s t : Set P} (h : s โІ t) :
          theorem asymptoticCone_biUnion {k : Type u_1} {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] {ฮน : Type u_4} {s : Set ฮน} (hs : s.Finite) (f : ฮน โ†’ Set P) :
          asymptoticCone k (โ‹ƒ i โˆˆ s, f i) = โ‹ƒ i โˆˆ s, asymptoticCone k (f i)
          theorem asymptoticCone_sUnion {k : Type u_1} {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] {S : Set (Set P)} (hS : S.Finite) :
          asymptoticCone k (โ‹ƒโ‚€ S) = โ‹ƒ s โˆˆ S, asymptoticCone k s
          theorem Finset.asymptoticCone_biUnion {k : Type u_1} {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] {ฮน : Type u_4} (s : Finset ฮน) (f : ฮน โ†’ Set P) :
          asymptoticCone k (โ‹ƒ i โˆˆ s, f i) = โ‹ƒ i โˆˆ s, asymptoticCone k (f i)
          theorem asymptoticCone_iUnion_of_finite {k : Type u_1} {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] {ฮน : Type u_4} [Finite ฮน] (f : ฮน โ†’ Set P) :
          asymptoticCone k (โ‹ƒ (i : ฮน), f i) = โ‹ƒ (i : ฮน), asymptoticCone k (f i)
          theorem asymptoticCone_eq_closure_of_forall_smul_mem {k : Type u_1} {V : Type u_2} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [TopologicalSpace V] [TopologicalSpace k] [OrderTopology k] [IsStrictOrderedRing k] [IsTopologicalAddGroup V] [ContinuousSMul k V] {s : Set V} (hs : โˆ€ (c : k), 0 < c โ†’ โˆ€ x โˆˆ s, c โ€ข x โˆˆ s) :
          theorem StarConvex.smul_vadd_mem_of_isClosed_of_mem_asymptoticCone {k : Type u_1} {V : Type u_2} [Field k] [LinearOrder k] [IsStrictOrderedRing k] [TopologicalSpace k] [OrderTopology k] [AddCommGroup V] [Module k V] [TopologicalSpace V] [IsTopologicalAddGroup V] [ContinuousSMul k V] {s : Set V} {c : k} {v p : V} (hsโ‚ : StarConvex k p s) (hsโ‚‚ : IsClosed s) (hc : 0 โ‰ค c) (hv : v โˆˆ asymptoticCone k s) :

          If a closed set s is star-convex at p and v is in the asymptotic cone of s, then the ray of direction v starting from p is contained in s.

          theorem Convex.smul_vadd_mem_of_isClosed_of_mem_asymptoticCone {k : Type u_1} {V : Type u_2} [Field k] [LinearOrder k] [IsStrictOrderedRing k] [TopologicalSpace k] [OrderTopology k] [AddCommGroup V] [Module k V] [TopologicalSpace V] [IsTopologicalAddGroup V] [ContinuousSMul k V] {s : Set V} {c : k} {v p : V} (hsโ‚ : Convex k s) (hsโ‚‚ : IsClosed s) (hc : 0 โ‰ค c) (hv : v โˆˆ asymptoticCone k s) (hp : p โˆˆ s) :

          If v is in the asymptotic cone of a closed convex set s, then for every p โˆˆ s, the ray of direction v starting from p is contained in s.

          If v is in the asymptotic cone of a convex set s, then for every interior point p, the ray of direction v starting from p is contained in s.