Documentation Verification Report

ContinuousAffineEquiv

πŸ“ Source: Mathlib/Topology/Algebra/ContinuousAffineEquiv.lean

Statistics

MetricCount
DefinitionsContinuousAffineEquiv, apply, symm_apply, constVAdd, instEquivLike, instFunLike, prodAssoc, prodComm, prodCongr, refl, toAffineEquiv, toContinuousAffineMap, toHomeomorph, trans, toContinuousAffineEquiv, Β«term_≃ᴬ[_]_Β»
16
Theoremsapply_eq_iff_eq, apply_eq_iff_eq_symm_apply, apply_symm_apply, bijective, coe_coe, coe_refl, coe_symm_toAffineEquiv, coe_symm_toEquiv, coe_toContinuousAffineMap, coe_toEquiv, coe_trans, constVAdd_coe, continuous, continuous_invFun, continuous_toFun, eq_symm_apply, ext, ext_iff, image_eq_preimage_symm, image_preimage, image_symm, image_symm_eq_preimage, image_symm_image, injective, instHomeomorphClass, preimage_image, preimage_symm, prodAssoc_apply, prodAssoc_symm_apply, prodAssoc_toAffineEquiv, prodComm_apply, prodComm_symm, prodComm_symm_apply, prodComm_toAffineEquiv, prodCongr_apply, prodCongr_symm, prodCongr_toAffineEquiv, prodCongr_toContinuousAffineMap, refl_apply, refl_symm, refl_trans, self_trans_symm, surjective, symm_apply_apply, symm_apply_eq, symm_bijective, symm_image_image, symm_refl, symm_symm, symm_symm_apply, symm_trans_self, toAffineEquiv_injective, toAffineEquiv_refl, toAffineEquiv_symm, toContinuousAffineMap_injective, toContinuousAffineMap_toAffineMap, toContinuousAffineMap_toContinuousMap, toEquiv_refl, toEquiv_symm, trans_apply, trans_assoc, trans_refl, trans_toContinuousAffineMap, coe_toContinuousAffineEquiv, toContinuousAffineEquiv_toContinuousAffineMap
65
Total81

ContinuousAffineEquiv

Definitions

NameCategoryTheorems
constVAdd πŸ“–CompOp
1 mathmath: constVAdd_coe
instEquivLike πŸ“–CompOp
1 mathmath: instHomeomorphClass
instFunLike πŸ“–CompOp
39 mathmath: image_symm_eq_preimage, prodComm_apply, injective, symm_symm_apply, coe_toContinuousAffineMap, AmpleSet.preimage_iff, symm_apply_apply, image_preimage, prodCongr_apply, ContinuousLinearEquiv.coe_toContinuousAffineEquiv, refl_apply, symm_apply_eq, preimage_symm, coe_toEquiv, apply_symm_apply, apply_eq_iff_eq, apply_eq_iff_eq_symm_apply, AmpleSet.preimage, ext_iff, trans_apply, coe_refl, surjective, coe_trans, AmpleSet.image_iff, continuous, coe_symm_toEquiv, image_eq_preimage_symm, preimage_image, AffineIsometryEquiv.coe_symm_toContinuousAffineEquiv, bijective, prodAssoc_apply, coe_symm_toAffineEquiv, coe_coe, image_symm, AmpleSet.image, symm_image_image, image_symm_image, eq_symm_apply, AffineIsometryEquiv.coe_toContinuousAffineEquiv
prodAssoc πŸ“–CompOp
3 mathmath: prodAssoc_toAffineEquiv, prodAssoc_apply, prodAssoc_symm_apply
prodComm πŸ“–CompOp
4 mathmath: prodComm_apply, prodComm_symm_apply, prodComm_toAffineEquiv, prodComm_symm
prodCongr πŸ“–CompOp
4 mathmath: prodCongr_toContinuousAffineMap, prodCongr_apply, prodCongr_symm, prodCongr_toAffineEquiv
refl πŸ“–CompOp
11 mathmath: symm_trans_self, self_trans_symm, refl_apply, AffineIsometryEquiv.toContinuousAffineEquiv_refl, trans_refl, refl_trans, coe_refl, toEquiv_refl, refl_symm, symm_refl, toAffineEquiv_refl
toAffineEquiv πŸ“–CompOp
18 mathmath: prodAssoc_toAffineEquiv, toEquiv_symm, prodComm_symm_apply, coe_toEquiv, prodComm_toAffineEquiv, constVAdd_coe, toAffineEquiv_injective, toEquiv_refl, coe_symm_toEquiv, continuous_toFun, continuous_invFun, toAffineEquiv_symm, coe_symm_toAffineEquiv, prodCongr_toAffineEquiv, coe_coe, toContinuousAffineMap_toAffineMap, prodAssoc_symm_apply, toAffineEquiv_refl
toContinuousAffineMap πŸ“–CompOp
7 mathmath: coe_toContinuousAffineMap, prodCongr_toContinuousAffineMap, ContinuousLinearEquiv.toContinuousAffineEquiv_toContinuousAffineMap, trans_toContinuousAffineMap, toContinuousAffineMap_injective, toContinuousAffineMap_toContinuousMap, toContinuousAffineMap_toAffineMap
toHomeomorph πŸ“–CompOp
1 mathmath: toContinuousAffineMap_toContinuousMap
trans πŸ“–CompOp
8 mathmath: symm_trans_self, self_trans_symm, trans_toContinuousAffineMap, trans_refl, trans_apply, refl_trans, coe_trans, trans_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
apply_eq_iff_eq πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineEquiv
instFunLike
β€”Equiv.apply_eq_iff_eq
apply_eq_iff_eq_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineEquiv
instFunLike
symm
β€”Equiv.apply_eq_iff_eq_symm_apply
apply_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineEquiv
instFunLike
symm
β€”Equiv.apply_symm_apply
bijective πŸ“–mathematicalβ€”Function.Bijective
DFunLike.coe
ContinuousAffineEquiv
instFunLike
β€”Equiv.bijective
coe_coe πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
AffineEquiv.equivLike
toAffineEquiv
ContinuousAffineEquiv
instFunLike
β€”β€”
coe_refl πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineEquiv
instFunLike
refl
β€”β€”
coe_symm_toAffineEquiv πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
EquivLike.toFunLike
AffineEquiv.equivLike
AffineEquiv.symm
toAffineEquiv
ContinuousAffineEquiv
instFunLike
symm
β€”β€”
coe_symm_toEquiv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
AffineEquiv.toEquiv
toAffineEquiv
ContinuousAffineEquiv
instFunLike
symm
β€”β€”
coe_toContinuousAffineMap πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
ContinuousAffineMap.instFunLike
toContinuousAffineMap
ContinuousAffineEquiv
instFunLike
β€”β€”
coe_toEquiv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
AffineEquiv.toEquiv
toAffineEquiv
ContinuousAffineEquiv
instFunLike
β€”β€”
coe_trans πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineEquiv
instFunLike
trans
β€”β€”
constVAdd_coe πŸ“–mathematicalβ€”toAffineEquiv
constVAdd
AffineEquiv.constVAdd
β€”β€”
continuous πŸ“–mathematicalβ€”Continuous
DFunLike.coe
ContinuousAffineEquiv
instFunLike
β€”continuous_toFun
continuous_invFun πŸ“–mathematicalβ€”Continuous
Equiv.invFun
AffineEquiv.toEquiv
toAffineEquiv
β€”β€”
continuous_toFun πŸ“–mathematicalβ€”Continuous
Equiv.toFun
AffineEquiv.toEquiv
toAffineEquiv
β€”β€”
eq_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineEquiv
instFunLike
symm
β€”Equiv.eq_symm_apply
ext πŸ“–β€”DFunLike.coe
ContinuousAffineEquiv
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineEquiv
instFunLike
β€”ext
image_eq_preimage_symm πŸ“–mathematicalβ€”Set.image
DFunLike.coe
ContinuousAffineEquiv
instFunLike
Set.preimage
symm
β€”Equiv.image_eq_preimage_symm
image_preimage πŸ“–mathematicalβ€”Set.image
DFunLike.coe
ContinuousAffineEquiv
instFunLike
Set.preimage
β€”Function.Surjective.image_preimage
surjective
image_symm πŸ“–mathematicalβ€”Set.image
DFunLike.coe
ContinuousAffineEquiv
instFunLike
symm
Set.preimage
β€”Equiv.image_eq_preimage_symm
image_symm_eq_preimage πŸ“–mathematicalβ€”Set.image
DFunLike.coe
ContinuousAffineEquiv
instFunLike
symm
Set.preimage
β€”image_eq_preimage_symm
symm_symm
image_symm_image πŸ“–mathematicalβ€”Set.image
DFunLike.coe
ContinuousAffineEquiv
instFunLike
symm
β€”symm_image_image
injective πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineEquiv
instFunLike
β€”Equiv.injective
instHomeomorphClass πŸ“–mathematicalβ€”HomeomorphClass
ContinuousAffineEquiv
instEquivLike
β€”continuous_toFun
continuous_invFun
preimage_image πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
ContinuousAffineEquiv
instFunLike
Set.image
β€”Function.Injective.preimage_image
injective
preimage_symm πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
ContinuousAffineEquiv
instFunLike
symm
Set.image
β€”image_symm
prodAssoc_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineEquiv
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instAddTorsor
Prod.instAddGroup
AddCommGroup.toAddGroup
instTopologicalSpaceProd
instFunLike
prodAssoc
β€”β€”
prodAssoc_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Prod.instAddCommMonoid
Prod.instAddTorsor
AddCommGroup.toAddGroup
Prod.instAddGroup
EquivLike.toFunLike
AffineEquiv.equivLike
AffineEquiv.symm
toAffineEquiv
instTopologicalSpaceProd
prodAssoc
β€”β€”
prodAssoc_toAffineEquiv πŸ“–mathematicalβ€”toAffineEquiv
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instAddTorsor
Prod.instAddGroup
AddCommGroup.toAddGroup
instTopologicalSpaceProd
prodAssoc
AffineEquiv.prodAssoc
β€”β€”
prodComm_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineEquiv
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Prod.instAddTorsor
AddCommGroup.toAddGroup
instTopologicalSpaceProd
instFunLike
prodComm
β€”β€”
prodComm_symm πŸ“–mathematicalβ€”symm
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Prod.instAddTorsor
AddCommGroup.toAddGroup
instTopologicalSpaceProd
prodComm
β€”β€”
prodComm_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AffineEquiv
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Prod.instAddTorsor
AddCommGroup.toAddGroup
EquivLike.toFunLike
AffineEquiv.equivLike
AffineEquiv.symm
toAffineEquiv
instTopologicalSpaceProd
prodComm
β€”β€”
prodComm_toAffineEquiv πŸ“–mathematicalβ€”toAffineEquiv
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Prod.instAddTorsor
AddCommGroup.toAddGroup
instTopologicalSpaceProd
prodComm
AffineEquiv.prodComm
β€”β€”
prodCongr_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineEquiv
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Prod.instAddTorsor
AddCommGroup.toAddGroup
instTopologicalSpaceProd
instFunLike
prodCongr
β€”β€”
prodCongr_symm πŸ“–mathematicalβ€”symm
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Prod.instAddTorsor
AddCommGroup.toAddGroup
instTopologicalSpaceProd
prodCongr
β€”β€”
prodCongr_toAffineEquiv πŸ“–mathematicalβ€”toAffineEquiv
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Prod.instAddTorsor
AddCommGroup.toAddGroup
instTopologicalSpaceProd
prodCongr
AffineEquiv.prodCongr
β€”β€”
prodCongr_toContinuousAffineMap πŸ“–mathematicalβ€”toContinuousAffineMap
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Prod.instAddTorsor
AddCommGroup.toAddGroup
instTopologicalSpaceProd
prodCongr
ContinuousAffineMap.prodMap
β€”β€”
refl_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineEquiv
instFunLike
refl
β€”β€”
refl_symm πŸ“–mathematicalβ€”symm
refl
β€”β€”
refl_trans πŸ“–mathematicalβ€”trans
refl
β€”ext
self_trans_symm πŸ“–mathematicalβ€”trans
symm
refl
β€”ext
symm_apply_apply
surjective πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineEquiv
instFunLike
β€”Equiv.surjective
symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineEquiv
instFunLike
symm
β€”Equiv.symm_apply_apply
symm_apply_eq πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineEquiv
instFunLike
symm
β€”Equiv.symm_apply_eq
symm_bijective πŸ“–mathematicalβ€”Function.Bijective
ContinuousAffineEquiv
symm
β€”Function.bijective_iff_has_inverse
symm_symm
symm_image_image πŸ“–mathematicalβ€”Set.image
DFunLike.coe
ContinuousAffineEquiv
instFunLike
symm
β€”Equiv.symm_image_image
symm_refl πŸ“–mathematicalβ€”symm
refl
β€”β€”
symm_symm πŸ“–mathematicalβ€”symmβ€”β€”
symm_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineEquiv
instFunLike
symm
β€”β€”
symm_trans_self πŸ“–mathematicalβ€”trans
symm
refl
β€”ext
apply_symm_apply
toAffineEquiv_injective πŸ“–mathematicalβ€”ContinuousAffineEquiv
AffineEquiv
toAffineEquiv
β€”β€”
toAffineEquiv_refl πŸ“–mathematicalβ€”toAffineEquiv
refl
AffineEquiv.refl
β€”β€”
toAffineEquiv_symm πŸ“–mathematicalβ€”toAffineEquiv
symm
AffineEquiv.symm
β€”β€”
toContinuousAffineMap_injective πŸ“–mathematicalβ€”ContinuousAffineEquiv
ContinuousAffineMap
toContinuousAffineMap
β€”ext
toContinuousAffineMap_toAffineMap πŸ“–mathematicalβ€”ContinuousAffineMap.toAffineMap
toContinuousAffineMap
AffineEquiv.toAffineMap
toAffineEquiv
β€”β€”
toContinuousAffineMap_toContinuousMap πŸ“–mathematicalβ€”ContinuousAffineMap.toContinuousMap
toContinuousAffineMap
toContinuousMap
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
HomeomorphClass.instContinuousMapClass
HomeomorphClass.instHomeomorph
toHomeomorph
β€”β€”
toEquiv_refl πŸ“–mathematicalβ€”AffineEquiv.toEquiv
toAffineEquiv
refl
Equiv.refl
β€”β€”
toEquiv_symm πŸ“–mathematicalβ€”AffineEquiv.toEquiv
toAffineEquiv
symm
Equiv.symm
β€”β€”
trans_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineEquiv
instFunLike
trans
β€”β€”
trans_assoc πŸ“–mathematicalβ€”transβ€”ext
trans_refl πŸ“–mathematicalβ€”trans
refl
β€”ext
trans_toContinuousAffineMap πŸ“–mathematicalβ€”toContinuousAffineMap
trans
ContinuousAffineMap.comp
β€”β€”

ContinuousAffineEquiv.Simps

Definitions

NameCategoryTheorems
apply πŸ“–CompOpβ€”
symm_apply πŸ“–CompOpβ€”

ContinuousLinearEquiv

Definitions

NameCategoryTheorems
toContinuousAffineEquiv πŸ“–CompOp
2 mathmath: coe_toContinuousAffineEquiv, toContinuousAffineEquiv_toContinuousAffineMap

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toContinuousAffineEquiv πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineEquiv
addGroupIsAddTorsor
AddCommGroup.toAddGroup
ContinuousAffineEquiv.instFunLike
toContinuousAffineEquiv
ContinuousLinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
equivLike
β€”RingHomInvPair.ids
toContinuousAffineEquiv_toContinuousAffineMap πŸ“–mathematicalβ€”ContinuousAffineEquiv.toContinuousAffineMap
addGroupIsAddTorsor
AddCommGroup.toAddGroup
toContinuousAffineEquiv
ContinuousLinearMap.toContinuousAffineMap
toContinuousLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
β€”RingHomInvPair.ids

(root)

Definitions

NameCategoryTheorems
ContinuousAffineEquiv πŸ“–CompData
44 mathmath: ContinuousAffineEquiv.image_symm_eq_preimage, ContinuousAffineEquiv.prodComm_apply, ContinuousAffineEquiv.injective, ContinuousAffineEquiv.instHomeomorphClass, ContinuousAffineEquiv.symm_symm_apply, ContinuousAffineEquiv.coe_toContinuousAffineMap, AmpleSet.preimage_iff, ContinuousAffineEquiv.symm_apply_apply, ContinuousAffineEquiv.image_preimage, ContinuousAffineEquiv.prodCongr_apply, ContinuousLinearEquiv.coe_toContinuousAffineEquiv, ContinuousAffineEquiv.refl_apply, ContinuousAffineEquiv.symm_apply_eq, ContinuousAffineEquiv.preimage_symm, ContinuousAffineEquiv.coe_toEquiv, ContinuousAffineEquiv.apply_symm_apply, ContinuousAffineEquiv.apply_eq_iff_eq, ContinuousAffineEquiv.apply_eq_iff_eq_symm_apply, AmpleSet.preimage, ContinuousAffineEquiv.ext_iff, ContinuousAffineEquiv.trans_apply, ContinuousAffineEquiv.toAffineEquiv_injective, ContinuousAffineEquiv.coe_refl, ContinuousAffineEquiv.surjective, ContinuousAffineEquiv.coe_trans, AmpleSet.image_iff, ContinuousAffineEquiv.continuous, ContinuousAffineEquiv.coe_symm_toEquiv, ContinuousAffineEquiv.image_eq_preimage_symm, ContinuousAffineEquiv.preimage_image, ContinuousAffineEquiv.toContinuousAffineMap_injective, AffineIsometryEquiv.coe_symm_toContinuousAffineEquiv, ContinuousAffineEquiv.bijective, ContinuousAffineEquiv.prodAssoc_apply, ContinuousAffineEquiv.coe_symm_toAffineEquiv, ContinuousAffineEquiv.coe_coe, AffineIsometryEquiv.toContinuousAffineEquiv_injective, ContinuousAffineEquiv.image_symm, AmpleSet.image, ContinuousAffineEquiv.symm_bijective, ContinuousAffineEquiv.symm_image_image, ContinuousAffineEquiv.image_symm_image, ContinuousAffineEquiv.eq_symm_apply, AffineIsometryEquiv.coe_toContinuousAffineEquiv
Β«term_≃ᴬ[_]_Β» πŸ“–CompOpβ€”

---

← Back to Index