Documentation

Mathlib.Topology.Algebra.ContinuousAffineEquiv

Continuous affine equivalences #

In this file, we define continuous affine equivalences, affine equivalences which are continuous with continuous inverse.

Main definitions #

TODO #

structure ContinuousAffineEquiv (k : Type u_1) (P₁ : Type u_2) (P₂ : Type u_3) {V₁ : Type u_4} {V₂ : Type u_5} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] extends P₁ ≃ᵃ[k] P₂ :
Type (max (max (max u_2 u_3) u_4) u_5)

A continuous affine equivalence, denoted P₁ ≃ᴬ[k] P₂, between two affine topological spaces is an affine equivalence such that forward and inverse maps are continuous.

Instances For

    A continuous affine equivalence, denoted P₁ ≃ᴬ[k] P₂, between two affine topological spaces is an affine equivalence such that forward and inverse maps are continuous.

    Equations
      Instances For
        def ContinuousAffineEquiv.toHomeomorph {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) :
        P₁ ≃ₜ P₂

        A continuous affine equivalence is a homeomorphism.

        Equations
          Instances For
            theorem ContinuousAffineEquiv.toAffineEquiv_injective {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] :
            instance ContinuousAffineEquiv.instEquivLike {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] :
            EquivLike (P₁ ≃ᴬ[k] P₂) P₁ P₂
            Equations
              instance ContinuousAffineEquiv.instHomeomorphClass {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] :
              HomeomorphClass (P₁ ≃ᴬ[k] P₂) P₁ P₂
              instance ContinuousAffineEquiv.coe {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] :
              Coe (P₁ ≃ᴬ[k] P₂) (P₁ ≃ᵃ[k] P₂)

              Coerce continuous affine equivalences to affine equivalences.

              Equations
                instance ContinuousAffineEquiv.instFunLike {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] :
                FunLike (P₁ ≃ᴬ[k] P₂) P₁ P₂
                Equations
                  @[simp]
                  theorem ContinuousAffineEquiv.coe_coe {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) :
                  e = e
                  @[simp]
                  theorem ContinuousAffineEquiv.coe_toEquiv {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) :
                  (↑e).toEquiv = e
                  def ContinuousAffineEquiv.Simps.apply {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) :
                  P₁P₂

                  See Note [custom simps projection]. We need to specify this projection explicitly in this case, because it is a composition of multiple projections.

                  Equations
                    Instances For
                      def ContinuousAffineEquiv.Simps.symm_apply {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) :
                      P₂P₁

                      See Note [custom simps projection].

                      Equations
                        Instances For
                          theorem ContinuousAffineEquiv.ext {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] {e e' : P₁ ≃ᴬ[k] P₂} (h : ∀ (x : P₁), e x = e' x) :
                          e = e'
                          theorem ContinuousAffineEquiv.ext_iff {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] {e e' : P₁ ≃ᴬ[k] P₂} :
                          e = e' ∀ (x : P₁), e x = e' x
                          theorem ContinuousAffineEquiv.continuous {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) :
                          def ContinuousAffineEquiv.toContinuousAffineMap {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) :
                          P₁ →ᴬ[k] P₂

                          A continuous affine equivalence is a continuous affine map.

                          Equations
                            Instances For
                              instance ContinuousAffineEquiv.ContinuousAffineMap.coe {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] :
                              Coe (P₁ ≃ᴬ[k] P₂) (P₁ →ᴬ[k] P₂)

                              Coerce continuous linear equivs to continuous linear maps.

                              Equations
                                @[simp]
                                theorem ContinuousAffineEquiv.coe_toContinuousAffineMap {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) :
                                theorem ContinuousAffineEquiv.toContinuousAffineMap_injective {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] :
                                theorem ContinuousAffineEquiv.toContinuousAffineMap_toAffineMap {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) :
                                theorem ContinuousAffineEquiv.toContinuousAffineMap_toContinuousMap {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) :
                                def ContinuousAffineEquiv.refl (k : Type u_1) (P₁ : Type u_2) {V₁ : Type u_6} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] :
                                P₁ ≃ᴬ[k] P₁

                                Identity map as a ContinuousAffineEquiv.

                                Equations
                                  Instances For
                                    @[simp]
                                    theorem ContinuousAffineEquiv.coe_refl {k : Type u_1} {P₁ : Type u_2} {V₁ : Type u_6} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] :
                                    (refl k P₁) = id
                                    @[simp]
                                    theorem ContinuousAffineEquiv.refl_apply {k : Type u_1} {P₁ : Type u_2} {V₁ : Type u_6} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] (x : P₁) :
                                    (refl k P₁) x = x
                                    @[simp]
                                    theorem ContinuousAffineEquiv.toAffineEquiv_refl {k : Type u_1} {P₁ : Type u_2} {V₁ : Type u_6} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] :
                                    (refl k P₁) = AffineEquiv.refl k P₁
                                    @[simp]
                                    theorem ContinuousAffineEquiv.toEquiv_refl {k : Type u_1} {P₁ : Type u_2} {V₁ : Type u_6} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] :
                                    (↑(refl k P₁)).toEquiv = Equiv.refl P₁
                                    def ContinuousAffineEquiv.symm {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) :
                                    P₂ ≃ᴬ[k] P₁

                                    Inverse of a continuous affine equivalence as a continuous affine equivalence.

                                    Equations
                                      Instances For
                                        @[simp]
                                        theorem ContinuousAffineEquiv.toAffineEquiv_symm {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) :
                                        e.symm = (↑e).symm
                                        @[simp]
                                        theorem ContinuousAffineEquiv.coe_symm_toAffineEquiv {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) :
                                        (↑e).symm = e.symm
                                        @[simp]
                                        theorem ContinuousAffineEquiv.toEquiv_symm {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) :
                                        (↑e.symm).toEquiv = (↑e).symm
                                        @[simp]
                                        theorem ContinuousAffineEquiv.coe_symm_toEquiv {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) :
                                        (↑e).symm = e.symm
                                        @[simp]
                                        theorem ContinuousAffineEquiv.apply_symm_apply {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) (p : P₂) :
                                        e (e.symm p) = p
                                        @[simp]
                                        theorem ContinuousAffineEquiv.symm_apply_apply {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) (p : P₁) :
                                        e.symm (e p) = p
                                        theorem ContinuousAffineEquiv.apply_eq_iff_eq_symm_apply {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) {p₁ : P₁} {p₂ : P₂} :
                                        e p₁ = p₂ p₁ = e.symm p₂
                                        theorem ContinuousAffineEquiv.apply_eq_iff_eq {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) {p₁ p₂ : P₁} :
                                        e p₁ = e p₂ p₁ = p₂
                                        @[simp]
                                        theorem ContinuousAffineEquiv.symm_symm {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) :
                                        e.symm.symm = e
                                        theorem ContinuousAffineEquiv.symm_bijective {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] :
                                        theorem ContinuousAffineEquiv.symm_symm_apply {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) (x : P₁) :
                                        e.symm.symm x = e x
                                        theorem ContinuousAffineEquiv.symm_apply_eq {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) {x : P₂} {y : P₁} :
                                        e.symm x = y x = e y
                                        theorem ContinuousAffineEquiv.eq_symm_apply {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) {x : P₂} {y : P₁} :
                                        y = e.symm x e y = x
                                        @[simp]
                                        theorem ContinuousAffineEquiv.image_symm {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (f : P₁ ≃ᴬ[k] P₂) (s : Set P₂) :
                                        f.symm '' s = f ⁻¹' s
                                        @[simp]
                                        theorem ContinuousAffineEquiv.preimage_symm {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (f : P₁ ≃ᴬ[k] P₂) (s : Set P₁) :
                                        f.symm ⁻¹' s = f '' s
                                        theorem ContinuousAffineEquiv.bijective {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) :
                                        theorem ContinuousAffineEquiv.surjective {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) :
                                        theorem ContinuousAffineEquiv.injective {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) :
                                        theorem ContinuousAffineEquiv.image_eq_preimage_symm {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) (s : Set P₁) :
                                        e '' s = e.symm ⁻¹' s
                                        theorem ContinuousAffineEquiv.image_symm_eq_preimage {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) (s : Set P₂) :
                                        e.symm '' s = e ⁻¹' s
                                        @[simp]
                                        theorem ContinuousAffineEquiv.image_preimage {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) (s : Set P₂) :
                                        e '' (e ⁻¹' s) = s
                                        @[simp]
                                        theorem ContinuousAffineEquiv.preimage_image {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) (s : Set P₁) :
                                        e ⁻¹' (e '' s) = s
                                        theorem ContinuousAffineEquiv.symm_image_image {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) (s : Set P₁) :
                                        e.symm '' (e '' s) = s
                                        theorem ContinuousAffineEquiv.image_symm_image {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) (s : Set P₂) :
                                        e '' (e.symm '' s) = s
                                        @[simp]
                                        theorem ContinuousAffineEquiv.refl_symm {k : Type u_1} {P₁ : Type u_2} {V₁ : Type u_6} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] :
                                        (refl k P₁).symm = refl k P₁
                                        @[simp]
                                        theorem ContinuousAffineEquiv.symm_refl {k : Type u_1} {P₁ : Type u_2} {V₁ : Type u_6} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] :
                                        (refl k P₁).symm = refl k P₁
                                        def ContinuousAffineEquiv.trans {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {P₃ : Type u_4} {V₁ : Type u_6} {V₂ : Type u_7} {V₃ : Type u_8} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] (e : P₁ ≃ᴬ[k] P₂) (e' : P₂ ≃ᴬ[k] P₃) :
                                        P₁ ≃ᴬ[k] P₃

                                        Composition of two ContinuousAffineEquivalences, applied left to right.

                                        Equations
                                          Instances For
                                            @[simp]
                                            theorem ContinuousAffineEquiv.coe_trans {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {P₃ : Type u_4} {V₁ : Type u_6} {V₂ : Type u_7} {V₃ : Type u_8} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] (e : P₁ ≃ᴬ[k] P₂) (e' : P₂ ≃ᴬ[k] P₃) :
                                            (e.trans e') = e' e
                                            @[simp]
                                            theorem ContinuousAffineEquiv.trans_apply {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {P₃ : Type u_4} {V₁ : Type u_6} {V₂ : Type u_7} {V₃ : Type u_8} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] (e : P₁ ≃ᴬ[k] P₂) (e' : P₂ ≃ᴬ[k] P₃) (p : P₁) :
                                            (e.trans e') p = e' (e p)
                                            theorem ContinuousAffineEquiv.trans_assoc {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {P₃ : Type u_4} {P₄ : Type u_5} {V₁ : Type u_6} {V₂ : Type u_7} {V₃ : Type u_8} {V₄ : Type u_9} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] [AddCommGroup V₄] [Module k V₄] [AddTorsor V₄ P₄] [TopologicalSpace P₄] (e₁ : P₁ ≃ᴬ[k] P₂) (e₂ : P₂ ≃ᴬ[k] P₃) (e₃ : P₃ ≃ᴬ[k] P₄) :
                                            (e₁.trans e₂).trans e₃ = e₁.trans (e₂.trans e₃)
                                            @[simp]
                                            theorem ContinuousAffineEquiv.trans_refl {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) :
                                            e.trans (refl k P₂) = e
                                            @[simp]
                                            theorem ContinuousAffineEquiv.refl_trans {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) :
                                            (refl k P₁).trans e = e
                                            @[simp]
                                            theorem ContinuousAffineEquiv.self_trans_symm {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) :
                                            e.trans e.symm = refl k P₁
                                            @[simp]
                                            theorem ContinuousAffineEquiv.symm_trans_self {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) :
                                            e.symm.trans e = refl k P₂
                                            theorem ContinuousAffineEquiv.trans_toContinuousAffineMap {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {P₃ : Type u_4} {V₁ : Type u_6} {V₂ : Type u_7} {V₃ : Type u_8} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] (e : P₁ ≃ᴬ[k] P₂) (e' : P₂ ≃ᴬ[k] P₃) :
                                            def ContinuousLinearEquiv.toContinuousAffineEquiv {k : Type u_1} [Ring k] {E : Type u_10} {F : Type u_11} [AddCommGroup E] [Module k E] [TopologicalSpace E] [AddCommGroup F] [Module k F] [TopologicalSpace F] (L : E ≃L[k] F) :

                                            Reinterpret a continuous linear equivalence between modules as a continuous affine equivalence.

                                            Equations
                                              Instances For
                                                def ContinuousAffineEquiv.constVAdd (k : Type u_1) (P₁ : Type u_2) {V₁ : Type u_6} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [ContinuousConstVAdd V₁ P₁] (v : V₁) :
                                                P₁ ≃ᴬ[k] P₁

                                                The map p ↦ v +ᵥ p as a continuous affine automorphism of an affine space on which addition is continuous.

                                                Equations
                                                  Instances For
                                                    theorem ContinuousAffineEquiv.constVAdd_coe {k : Type u_1} {P₁ : Type u_2} {V₁ : Type u_6} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [ContinuousConstVAdd V₁ P₁] (v : V₁) :
                                                    (constVAdd k P₁ v) = AffineEquiv.constVAdd k P₁ v
                                                    def ContinuousAffineEquiv.prodCongr {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {P₃ : Type u_4} {P₄ : Type u_5} {V₁ : Type u_6} {V₂ : Type u_7} {V₃ : Type u_8} {V₄ : Type u_9} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] [AddCommGroup V₄] [Module k V₄] [AddTorsor V₄ P₄] [TopologicalSpace P₄] (e₁ : P₁ ≃ᴬ[k] P₂) (e₂ : P₃ ≃ᴬ[k] P₄) :
                                                    P₁ × P₃ ≃ᴬ[k] P₂ × P₄

                                                    Product of two continuous affine equivalences. The map comes from Equiv.prodCongr

                                                    Equations
                                                      Instances For
                                                        @[simp]
                                                        theorem ContinuousAffineEquiv.prodCongr_toAffineEquiv {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {P₃ : Type u_4} {P₄ : Type u_5} {V₁ : Type u_6} {V₂ : Type u_7} {V₃ : Type u_8} {V₄ : Type u_9} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] [AddCommGroup V₄] [Module k V₄] [AddTorsor V₄ P₄] [TopologicalSpace P₄] (e₁ : P₁ ≃ᴬ[k] P₂) (e₂ : P₃ ≃ᴬ[k] P₄) :
                                                        (e₁.prodCongr e₂) = (↑e₁).prodCongr e₂
                                                        @[simp]
                                                        theorem ContinuousAffineEquiv.prodCongr_symm {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {P₃ : Type u_4} {P₄ : Type u_5} {V₁ : Type u_6} {V₂ : Type u_7} {V₃ : Type u_8} {V₄ : Type u_9} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] [AddCommGroup V₄] [Module k V₄] [AddTorsor V₄ P₄] [TopologicalSpace P₄] (e₁ : P₁ ≃ᴬ[k] P₂) (e₂ : P₃ ≃ᴬ[k] P₄) :
                                                        (e₁.prodCongr e₂).symm = e₁.symm.prodCongr e₂.symm
                                                        @[simp]
                                                        theorem ContinuousAffineEquiv.prodCongr_apply {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {P₃ : Type u_4} {P₄ : Type u_5} {V₁ : Type u_6} {V₂ : Type u_7} {V₃ : Type u_8} {V₄ : Type u_9} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] [AddCommGroup V₄] [Module k V₄] [AddTorsor V₄ P₄] [TopologicalSpace P₄] (e₁ : P₁ ≃ᴬ[k] P₂) (e₂ : P₃ ≃ᴬ[k] P₄) (p : P₁ × P₃) :
                                                        (e₁.prodCongr e₂) p = (e₁ p.1, e₂ p.2)
                                                        @[simp]
                                                        theorem ContinuousAffineEquiv.prodCongr_toContinuousAffineMap {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {P₃ : Type u_4} {P₄ : Type u_5} {V₁ : Type u_6} {V₂ : Type u_7} {V₃ : Type u_8} {V₄ : Type u_9} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] [AddCommGroup V₄] [Module k V₄] [AddTorsor V₄ P₄] [TopologicalSpace P₄] (e₁ : P₁ ≃ᴬ[k] P₂) (e₂ : P₃ ≃ᴬ[k] P₄) :
                                                        def ContinuousAffineEquiv.prodComm (k : Type u_1) (P₁ : Type u_2) (P₂ : Type u_3) {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] :
                                                        P₁ × P₂ ≃ᴬ[k] P₂ × P₁

                                                        Product of affine spaces is commutative up to continuous affine isomorphism.

                                                        Equations
                                                          Instances For
                                                            @[simp]
                                                            theorem ContinuousAffineEquiv.prodComm_apply (k : Type u_1) (P₁ : Type u_2) (P₂ : Type u_3) {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (a✝ : P₁ × P₂) :
                                                            (prodComm k P₁ P₂) a✝ = a✝.swap
                                                            @[simp]
                                                            theorem ContinuousAffineEquiv.prodComm_symm_apply (k : Type u_1) (P₁ : Type u_2) (P₂ : Type u_3) {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] (a✝ : P₂ × P₁) :
                                                            (↑(prodComm k P₁ P₂)).symm a✝ = a✝.swap
                                                            @[simp]
                                                            theorem ContinuousAffineEquiv.prodComm_toAffineEquiv (k : Type u_1) (P₁ : Type u_2) (P₂ : Type u_3) {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] :
                                                            (prodComm k P₁ P₂) = AffineEquiv.prodComm k P₁ P₂
                                                            @[simp]
                                                            theorem ContinuousAffineEquiv.prodComm_symm (k : Type u_1) (P₁ : Type u_2) (P₂ : Type u_3) {V₁ : Type u_6} {V₂ : Type u_7} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] :
                                                            (prodComm k P₁ P₂).symm = prodComm k P₂ P₁
                                                            def ContinuousAffineEquiv.prodAssoc (k : Type u_1) (P₁ : Type u_2) (P₂ : Type u_3) (P₃ : Type u_4) {V₁ : Type u_6} {V₂ : Type u_7} {V₃ : Type u_8} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] :
                                                            (P₁ × P₂) × P₃ ≃ᴬ[k] P₁ × P₂ × P₃

                                                            Product of affine spaces is associative up to continuous affine isomorphism.

                                                            Equations
                                                              Instances For
                                                                @[simp]
                                                                theorem ContinuousAffineEquiv.prodAssoc_apply (k : Type u_1) (P₁ : Type u_2) (P₂ : Type u_3) (P₃ : Type u_4) {V₁ : Type u_6} {V₂ : Type u_7} {V₃ : Type u_8} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] (p : (P₁ × P₂) × P₃) :
                                                                (prodAssoc k P₁ P₂ P₃) p = (p.1.1, p.1.2, p.2)
                                                                @[simp]
                                                                theorem ContinuousAffineEquiv.prodAssoc_toAffineEquiv (k : Type u_1) (P₁ : Type u_2) (P₂ : Type u_3) (P₃ : Type u_4) {V₁ : Type u_6} {V₂ : Type u_7} {V₃ : Type u_8} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] :
                                                                (prodAssoc k P₁ P₂ P₃) = AffineEquiv.prodAssoc k P₁ P₂ P₃
                                                                @[simp]
                                                                theorem ContinuousAffineEquiv.prodAssoc_symm_apply (k : Type u_1) (P₁ : Type u_2) (P₂ : Type u_3) (P₃ : Type u_4) {V₁ : Type u_6} {V₂ : Type u_7} {V₃ : Type u_8} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] (p : P₁ × P₂ × P₃) :
                                                                (↑(prodAssoc k P₁ P₂ P₃)).symm p = ((p.1, p.2.1), p.2.2)